36 55

Cited 0 times in

Hyperpolarized [1-13C] pyruvate MR spectroscopy detect altered glycolysis in the brain of a cognitively impaired mouse model fed high-fat diet

Authors
 Young-Suk Choi  ;  Somang Kang  ;  Sang-Yoon Ko  ;  Saeram Lee  ;  Jae Young Kim  ;  Hansol Lee  ;  Jae Eun Song  ;  Dong-Hyun Kim  ;  Eosu Kim  ;  Chul Hoon Kim  ;  , Lisa Saksida  ;  Ho-Taek Song  ;  Jong Eun Lee 
Citation
 Molecular Brain, Vol.18(1) : 74, 2018 
Journal Title
 Molecular Brain 
Issue Date
2018
Abstract
Higher dietary intakes of saturated fatty acid increase the risk of developing Alzheimer's disease and dementia, and even in people without diabetes higher glucose levels may be a risk factor for dementia. The mechanisms causing neuronal dysfunction and dementia by consuming high-fat diet degrading the integrity of the blood-brain barrier (BBB) has been suggested but are not yet fully understood, and metabolic state of the brain by this type of insult is still veiled. The objective of this study was to investigate the effect of high-fat diet on the brain metabolism by a multimodal imaging method using the hyperpolarizedcarbon 13 (13C)-pyruvate magnetic resonance (MR) spectroscopy and dynamic contrast-enhanced MR imaging in conjunction with the biochemical assay and the behavior test in a mouse model fed high-fat diet (HFD). In mice were fed 60% HFD for 6 months, hyperpolarized [1-13C] pyruvate MR spectroscopy showed decreased perfusion (p < 0.01) and increased conversion from pyruvate to lactate (p < 0.001) in the brain. The hippocampus and striatum showed the highest conversion ratio. The functional integrity of the blood-brain barrier tested by dynamic contrast-enhanced MR imaging showed no difference to the control. Lactate was increased in the cortex (p < 0.01) and striatum (p < 0.05), while PDH activity was decreased in the cortex (p < 0.01) and striatum (p < 0.001) and the phosphorylated PDH was increased in the striatum (p < 0.05). Mice fed HFD showed less efficiency in learning memory compared with control (p < 0.05). To determine whether hyperpolarized 13C-pyruvate magnetic resonance (MR) spectroscopy could detect a much earier event in the brain. Mice fed HFD for 3 months did not show a detectable cognitive decline in water maze based learning memory. Hyperpolarized [1-13C] pyruvate MR spectroscopy showed increased lactate conversion (P < .001), but no difference in cerebral perfusion. These results suggest that the increased hyperpolarized [1-13C] lactate signal in the brain of HFD-fed mice represent that altered metabolic alteration toward to glycolysis and hypoperfusion by the long-term metabolic stress by HFD further promote to glycolysis. The hyperpolarized [1-13C] pyruvate MR spectroscopy can be used to monitor the brain metabolism and will provide information helpful to understand the disease process.
Files in This Item:
T201804488.pdf.pdf Download
DOI
10.1186/s13041-018-0415-2
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Psychiatry (정신과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Anatomy (해부학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Pharmacology (약리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
Yonsei Authors
김어수(Kim, Eosu) ORCID logo https://orcid.org/0000-0001-9472-9465
김재영(Kim, Jae Young)
김철훈(Kim, Chul Hoon) ORCID logo https://orcid.org/0000-0002-7360-429X
송호택(Song, Ho Taek) ORCID logo https://orcid.org/0000-0002-6655-2575
이종은(Lee, Jong Eun) ORCID logo https://orcid.org/0000-0001-6203-7413
최영숙(Choi, Young Suk) ORCID logo https://orcid.org/0000-0003-4930-8455
Export
RIS (EndNote)
XLS (Excel)
XML
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/166704
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse