3 194

Cited 10 times in

Effects of constraint-induced movement therapy on neurogenesis and functional recovery after early hypoxic-ischemic injury in mice.

Authors
 DONG-WOOK RHA  ;  SEONG-WOONG KANG  ;  EUN SOOK PARK  ;  KYUNG HWA HAN  ;  CHUNG MO NAM  ;  JONG EUN LEE  ;  WON TAEK LEE  ;  SUNG-RAE CHO  ;  YOON-GHIL PARK 
Citation
 Developmental Medicine and Child Neurology, Vol.53(4) : 327-333, 2011 
Journal Title
 Developmental Medicine and Child Neurology 
ISSN
 0012-1622 
Issue Date
2011
Abstract
AIM: Constraint-induced movement therapy (CIMT) has emerged as a promising therapeutic strategy for improving affected upper limb function in children with hemiplegic cerebral palsy (CP). However, little is known about the changes in the brain that are induced by CIMT. This study was designed to investigate these changes and behavioural performance after CIMT intervention in mice with neonatal hypoxic-ischemic brain injury. METHOD: We utilized the neonatal hypoxic-ischemic brain injury model established in mice pups. Three weeks after the injury, the mice were randomly assigned to the following three groups: the control group (n = 15), the enriched-environment group (n = 17), and the CIMT with an enriched-environment group (CIMT-EE, n = 15). 5-bromo-2-deoxyuridine (BrdU) was injected daily to label proliferating cells during the 2 weeks of intervention. RESULTS: The CIMT-EE group showed better fall rate in the horizontal ladder rung walking test (mean 5.4%, SD 3.6%) than either the control (mean 14.3%, SD 7.3%; p = 0.001) or enriched-environment (mean 12.4%, SD 7.7%; p = 0.010) groups 2 weeks after the end of intervention. The CIMT-EE group also showed more neurogenesis (mean 7069 cells/mm³, SD 4017 cells/mm³) than either the control group (mean 1555 cells/mm³, SD 1422 cells/mm³; p < 0.001) or enriched-environment group (mean 2994 cells/mm³, SD 3498 cells/mm³; p = 0.001) in the subventricular zone. In the striatum, neurogenesis in the CIMT-EE group (mean 534 cells/mm³, SD 441 cells/mm³) was greater than in the control group (mean 95 cells/mm³, SD 133 cells/mm³; p = 0.001). INTERPRETATION: There was CIMT-EE enhanced neurogenesis in the brain along with functional benefits in mice after early hypoxic-ischemic brain injury. This is the first study to demonstrate the effects of CIMT on neurogenesis and functional recovery after experimental injury to an immature brain.
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/92762
DOI
10.1111/j.1469-8749.2010.03877.x
Appears in Collections:
1. Journal Papers (연구논문) > 1. College of Medicine (의과대학) > Yonsei Biomedical Research Center (연세의생명연구원)
1. Journal Papers (연구논문) > 1. College of Medicine (의과대학) > Dept. of Anatomy (해부학교실)
1. Journal Papers (연구논문) > 1. College of Medicine (의과대학) > Dept. of Preventive Medicine (예방의학교실)
1. Journal Papers (연구논문) > 1. College of Medicine (의과대학) > Dept. of Rehabilitation Medicine (재활의학교실)
Yonsei Authors
강성웅(Kang, Seong Woong) ; 나동욱(Rha, Dong Wook) ; 남정모(Nam, Jung Mo) ; 박윤길(Park, Yoon Ghil) ; 박은숙(Park, Eun Sook) ; 이원택(Lee, Won Taek) ; 이종은(Lee, Jong Eun) ; 조성래(Cho, Sung Rae) ; 한경화(Han, Kyung Hwa)
사서에게 알리기
  feedback
Full Text
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8749.2010.03877.x/abstract
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse