4 86

Cited 19 times in

miR-200b regulates cell migration via Zeb family during mouse palate development.

 Jeong-Oh Shin ; Eizo Nakagawa ; Han-Sung Jung ; Sung-Won Cho ; Jong-Min Lee ; Kyoung-Won Cho ; Eun-Jung Kim 
 Histochemistry and Cell Biology, Vol.137(4) : 459~470, 2012 
Journal Title
 Histochemistry and Cell Biology 
Issue Date
Palate development requires coordinating proper cellular and molecular events in palatogenesis, including the epithelial-mesenchymal transition (EMT), apoptosis, cell proliferation, and cell migration. Zeb1 and Zeb2 regulate epithelial cadherin (E-cadherin) and EMT during organogenesis. While microRNA 200b (miR-200b) is known to be a negative regulator of Zeb1 and Zeb2 in cancer progression, its regulatory effects on Zeb1 and Zeb2 in palatogenesis have not yet been clarified. The aim of this study is to investigate the relationship between the regulators of palatal development, specifically, miR-200b and the Zeb family. Expression of both Zeb1 and Zeb2 was detected in the mesenchyme of the mouse palate, while miR-200b was expressed in the medial edge epithelium. After contact with the palatal shelves, miR-200b was expressed in the palatal epithelial lining and epithelial island around the fusion region but not in the palatal mesenchyme. The function of miR-200b was examined by overexpression via a lentiviral vector in the palatal shelves. Ectopic expression of miR-200b resulted in suppression of the Zeb family, upregulation of E-cadherin, and changes in cell migration and palatal fusion. These results suggest that miR-200b plays crucial roles in cell migration and palatal fusion by regulating Zeb1 and Zeb2 as a noncoding RNA during palate development.
Appears in Collections:
1. 연구논문 > 2. College of Dentistry > Dept. of Oral Biology
Yonsei Authors
사서에게 알리기
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.