BACKGROUND:
Heterogeneous echogenicity of the thyroid gland has been associated with diffuse thyroid disease and benign and malignant nodules can coexist with diffuse thyroid disease. Underlying heterogeneous echogenicity might make it difficult to differentiate between benign and malignant nodules on US. Thus, the aim of this study was to evaluate the influence of underlying thyroid echogenicity on diagnosis of thyroid malignancies using US.
METHODS:
A total of 1,373 patients who underwent US-guided fine needle aspiration of 1,449 thyroid nodules from June 2009 to August 2009 were included. The diagnostic performance of US assessment for thyroid nodules was calculated and compared according to underlying thyroid echogenicity. The diagnostic performance of US assessments in the diagnosis of thyroid malignancy according to the underlying parenchymal echogenicity was compared using a logistic regression with the GEE (generalized estimating equation) method. Each US feature of malignant and benign thyroid nodules was analyzed according to underlying echogenicity to evaluate which feature affected the final diagnosis.
RESULTS:
Among the 1,449 nodules, 325 (22.4%) were malignant and 1,124 (77.6%) were benign. Thyroid glands with heterogeneous echogenicity showed significantly lower specificity, PPV, and accuracy compared to thyroid glands with homogeneous echogenicity, 76.3% to 83.7%, 48.7% to 60.9%, and 77.6% to 84.4%, respectively (P=0.009, 0.02 and 0.005, respectively). In benign thyroid nodules, microlobulated or irregular margins were more frequently seen in thyroid glands with heterogeneous echogenicity than in those with homogenous echogenicity (P<0.001).
CONCLUSION:
Heterogeneous echogenicity of the thyroid gland significantly lowers the specificity, PPV, and accuracy of US in the differentiation of thyroid nodules. Therefore, caution is required during evaluation of thyroid nodules detected in thyroid parenchyma showing heterogeneous echogenicity.