116 206

Cited 0 times in

Radiomics-based prediction of multiple gene alteration incorporating mutual genetic information in glioblastoma and grade 4 astrocytoma, IDH-mutant

Authors
 Beomseok Sohn  ;  Chansik An  ;  Dain Kim  ;  Sung Soo Ahn  ;  Kyunghwa Han  ;  Se Hoon Kim  ;  Seok-Gu Kang  ;  Jong Hee Chang  ;  Seung-Koo Lee 
Citation
 JOURNAL OF NEURO-ONCOLOGY, Vol.155(3) : 267-276, 2021-12 
Journal Title
JOURNAL OF NEURO-ONCOLOGY
ISSN
 0167-594X 
Issue Date
2021-12
Keywords
Brain ; Genes ; Glioblastoma ; Magnetic resonance imaging ; Mutation
Abstract
Purpose: In glioma, molecular alterations are closely associated with disease prognosis. This study aimed to develop a radiomics-based multiple gene prediction model incorporating mutual information of each genetic alteration in glioblastoma and grade 4 astrocytoma, IDH-mutant.

Methods: From December 2014 through January 2020, we enrolled 418 patients with pathologically confirmed glioblastoma (based on the 2016 WHO classification). All selected patients had preoperative MRI and isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor amplification, and alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss status. Patients were randomly split into training and test sets (7:3 ratio). Enhancing tumor and peritumoral T2-hyperintensity were auto-segmented, and 660 radiomics features were extracted. We built binary relevance (BR) and ensemble classifier chain (ECC) models for multi-label classification and compared their performance. In the classifier chain, we calculated the mean absolute Shapley value of input features.

Results: The micro-averaged area under the curves (AUCs) for the test set were 0.804 and 0.842 in BR and ECC models, respectively. IDH mutation status was predicted with the highest AUCs of 0.964 (BR) and 0.967 (ECC). The ECC model showed higher AUCs than the BR model for ATRX (0.822 vs. 0.775) and MGMT promoter methylation (0.761 vs. 0.653) predictions. The mean absolute Shapley values suggested that predicted outcomes from the prior classifiers were important for better subsequent predictions along the classifier chains.

Conclusion: We built a radiomics-based multiple gene prediction chained model that incorporates mutual information of each genetic alteration in glioblastoma and grade 4 astrocytoma, IDH-mutant and performs better than a simple bundle of binary classifiers using prior classifiers' prediction probability.
Files in This Item:
T202124981.pdf Download
DOI
10.1007/s11060-021-03870-z
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
Yonsei Authors
Kang, Seok Gu(강석구) ORCID logo https://orcid.org/0000-0001-5676-2037
Kim, Se Hoon(김세훈) ORCID logo https://orcid.org/0000-0001-7516-7372
Sohn, Beomseok(손범석) ORCID logo https://orcid.org/0000-0002-6765-8056
Ahn, Sung Soo(안성수) ORCID logo https://orcid.org/0000-0002-0503-5558
Lee, Seung Koo(이승구) ORCID logo https://orcid.org/0000-0001-5646-4072
Chang, Jong Hee(장종희) ORCID logo https://orcid.org/0000-0003-1509-9800
Han, Kyung Hwa(한경화)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/187625
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links