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Abstract
Purpose  In glioma, molecular alterations are closely associated with disease prognosis. This study aimed to develop a 
radiomics-based multiple gene prediction model incorporating mutual information of each genetic alteration in glioblastoma 
and grade 4 astrocytoma, IDH-mutant.
Methods  From December 2014 through January 2020, we enrolled 418 patients with pathologically confirmed glioblastoma 
(based on the 2016 WHO classification). All selected patients had preoperative MRI and isocitrate dehydrogenase (IDH) 
mutation, O-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor 
amplification, and alpha-thalassemia/mental retardation syndrome X-linked (ATRX) loss status. Patients were randomly 
split into training and test sets (7:3 ratio). Enhancing tumor and peritumoral T2-hyperintensity were auto-segmented, and 
660 radiomics features were extracted. We built binary relevance (BR) and ensemble classifier chain (ECC) models for 
multi-label classification and compared their performance. In the classifier chain, we calculated the mean absolute Shapley 
value of input features.
Results  The micro-averaged area under the curves (AUCs) for the test set were 0.804 and 0.842 in BR and ECC models, 
respectively. IDH mutation status was predicted with the highest AUCs of 0.964 (BR) and 0.967 (ECC). The ECC model 
showed higher AUCs than the BR model for ATRX (0.822 vs. 0.775) and MGMT promoter methylation (0.761 vs. 0.653) 
predictions. The mean absolute Shapley values suggested that predicted outcomes from the prior classifiers were important 
for better subsequent predictions along the classifier chains.
Conclusion  We built a radiomics-based multiple gene prediction chained model that incorporates mutual information of 
each genetic alteration in glioblastoma and grade 4 astrocytoma, IDH-mutant and performs better than a simple bundle of 
binary classifiers using prior classifiers’ prediction probability.
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Introduction

Glioblastoma, the most common primary malignant brain 
parenchymal tumor, is challenging to treat [1]. A compre-
hensive molecular characterization of glioblastoma showed 
that most tumors harbor recurrent molecular alterations dis-
rupting core pathways involved in the regulation of growth, 
cell cycle, DNA repair, apoptosis, and control of chromatin 
state [2]. These recurrent and relevant genomic variants con-
tinue to be targets for drug development [3–5].

Isocitrate dehydrogenase (IDH) mutation has been rec-
ognized as one of the most important molecular markers in 
gliomas and integrated for glioma classification since 2016 
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[6–8]. In addition, according to the upcoming 2021 WHO 
Classification of Tumors of the Central Nervous System 
(CNS) [9], previously called glioblastoma, isocitrate dehy-
drogenase (IDH)-mutant is now designated as astrocytoma, 
IDH-mutant, WHO grade 4 and glioblastoma should be diag-
nosed in the setting of IDH wildtype. O-6-methylguanine-
DNA methyltransferase (MGMT) promoter methylation and 
epidermal growth factor receptor (EGFR) alteration are also 
related to prognosis. Despite the potential benefits of these 
genetic biomarkers, methods such as next-generation sequenc-
ing still have limited clinical utility due to costs and the need 
for direct tissue sampling. Therefore, it is desirable that MRI 
predicts the tumors with specific molecular features. Several 
studies have investigated that quantitative image features from 
preoperative imaging of gliomas can be used to predict IDH 
and alpha-thalassemia/mental retardation syndrome X-linked 
(ATRX) mutations, EGFR amplification, and MGMT pro-
moter methylation [10–14].

Radiomics extracts high-dimensional quantitative features, 
such as intensity distributions, spatial relationships, textural 
heterogeneity, and shape descriptors [15]. The aim of radiom-
ics is to extract quantitative and ideally reproducible infor-
mation, such as complex patterns that are difficult to recog-
nize [16]. Several studies applied radiomics to predict specific 
genetic mutations in patients with glioblastoma [17–21]; how-
ever, only a few have tried to predict multiple genes simultane-
ously [21, 22].

There are close associations between IDH mutation and 
MGMT promoter methylation and between IDH and ATRX 
mutations [23, 24]. Verhaak et al. classified four gene expres-
sion subtypes of glioblastoma and found that EGFR ampli-
fication and IDH mutation are major features of classical 
and proneural glioblastomas, respectively [25]. The Cancer 
Genome Atlas (TCGA) data analysis showed a tendency 
towards mutual exclusivity of alterations of components within 
the mutation pathway [26]. Therefore, a radiomics-based pre-
diction algorithm should integrate the mutual exclusivity 
among oncogenic pathways and correlations in genetic muta-
tions in glioma [23, 26].

We hypothesized that simultaneous multiple genotype pre-
diction that incorporates relationships among genetic altera-
tions could lead to better performance than multiple independ-
ent predictions for each genotype. Therefore, this study aimed 
to develop a radiomics-based multiple gene prediction model 
that incorporates mutual information of each genetic alteration 
in glioblastoma and grade 4 astrocytoma, IDH-mutant.

Materials and methods

Patient cohort

We identified patients with newly diagnosed and patho-
logically confirmed glioblastoma and grade 4 astrocytoma, 
IDH-mutant at our institution from December 2014 through 
January 2020. In our electronic medical record system, the 
diagnosis was glioblastoma, in line with the 2016 WHO 
classification. Eligible patients met both of the following 
criteria: (1) had preoperative MRI, including sequences of 
T1- and T2-weighted image (T1WI and T2WI), FLAIR, 
and contrast-enhanced T1WI; and (2) had a known specific 
genetic alteration status, that is, IDH and ATRX mutation, 
MGMT promoter methylation, and EGFR amplification. 
This retrospective study was approved by our institutional 
review board, and the informed consent requirement was 
waived.

We initially screened 471 patients from medical records. 
Patients without molecular marker information (n = 20) or 
preoperative MRI were excluded (n = 11). Patients with the 
poor image quality of MRI scans or without the full four 
sequences were also excluded (n = 19). Furthermore, we 
excluded two patients due to segmentation failure and one 
due to feature extraction error. Finally, 418 patients were 
enrolled.

The final study cohort was randomly split into training 
and test sets (7:3 ratio) while maintaining the proportions of 
two less-frequent mutations: IDH and ATRX.

Image processing and radiomic feature extraction

All preoperative MRI scans were performed using a 3 T sys-
tem MRI with an eight-channel sensitivity-encoding head 
coil (Achieva or Ingenia, Philips Healthcare). The MRI 
parameters are described in the Supplementary material. 
Using T1WI, T2WI, FLAIR, and contrast-enhanced T1WI, 
a previously described and validated algorithm (HD-GLIO) 
was used to produce contrast-enhancing tumor (CE) and 
non-enhancing T2/FLAIR signal abnormality (T2) seg-
mentation masks of the tumors [27, 28]. During this pro-
cess, image co-registration and brain extraction were also 
performed. After that, images were resampled to an iden-
tical spatial resolution of 1 × 1 × 1 mm. A board-certified 
neuroradiologist inspected all images and masks to ensure 
accuracy. These images were subjected to N4 bias correc-
tion to remove low-frequency intensity and nonuniformity. 
After N4 bias correction, Z-score image normalization was 
done. A total of 660 radiomic features were extracted from 
the masks on T1WI, T2WI, FLAIR, and contrast-enhanced 
T1WI using pyradiomics with a bin count of 32 (http://​www.​
radio​mics.​io/​pyrad​iomics.​html) [29].

http://www.radiomics.io/pyradiomics.html
http://www.radiomics.io/pyradiomics.html
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Genetic evaluation and molecular subtyping

For IDH and EGFR, mutational and copy number analyses 
were performed by targeted next-generation sequencing, 
using the TruSight Tumor 170 panel [23]. Immunohisto-
chemistry was performed using antibodies against ATRX 
protein. Staining loss in > 50% of tumor cells was consid-
ered an ATRX loss case. MGMT promoter methylation was 
evaluated through a methylation-specific polymerase chain 
reaction [30].

Visualization of mutual relations of genetic 
alterations

An UpSet plot was drawn based on the frequency table from 
the entire dataset to examine the relationships between the 
mutations of IDH, ATRX, MGMT, and EGFR [31]. The 
UpSet plots the intersections of a set as a matrix (Fig. 1). 
Each column corresponds to a set, and each row corresponds 
to one segment in a Venn diagram.

Multi‑label oversampling of training data

Our data had class imbalance, especially for IDH and ATRX. 
Synthetic Minority Oversampling Technique (SMOTE) is 
currently one of the most commonly used algorithms to 
handle this imbalance [32]. We used Multi-Label SMOTE 
(ML-SMOTE) to mitigate the class imbalance because our 
task was multi-label classification [33].

Multi‑label classification

A common approach to multi-label classification is the 
binary relevance (BR) method, whereby a multi-label 
problem is transformed into multiple binary problems, 
such that a binary model is trained for each label. Classi-
fier chain (CC) is another approach for multi-label clas-
sification; it links classifiers along a chain where each 
classifier deals with a single-label classification [34]. CC 
is based on the BR method but can take into account label 
correlations (Fig. 2); therefore, it is often applied in an 
ensemble framework, whereby multiple chains with differ-
ent orders of classifiers are ensembled [34]. In this study, 
we compared the BR and ensemble CC (ECC) methods.

Model development and validation

For both BR and ECC methods, the basic unit of our 
models was a pipeline consisting of three components: 
a standardizer using Z-score normalization, a feature 
selector using the least absolute shrinkage and selection 
operator (LASSO), and a classifier using the support vec-
tor machine with the linear kernel (Fig. 2). For the BR 
method, each pipeline for a single label was trained sepa-
rately. For the ECC method, ten different CCs with random 
classifier orders were trained, and the mean value of the 
predicted probabilities was used as the final prediction. 

Fig. 1   UpSet plot and Venn 
diagram for the entire cohort
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Hyperparameter tuning is described in the Supplementary 
material.

After training the BR and ECC models with the opti-
mized number of input features and C values, the trained 
models were tested in the test dataset.

Feature importance for CC

To examine whether the predicted outcomes from earlier 
classifiers played important roles in the next prediction along 
a chain and identify radiomics features that were important 
for predicting mutations in the four genes, we calculated 
the mean absolute Shapley value for each of the selected 

Fig. 2   The structure of independent classifiers for the binary relevance and classifier chain models. Ten different classifier chain models were 
averaged for the ensemble
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input features using the Shapley additive explanations 
(SHAP) algorithm. For this analysis, the classifier order of 
IDH > ATRX > MGMT > EGFR was chosen in decreasing 
order of the test performance. All process up to this point has 
been done using Python 3 with ScikitLearn library v0.21.2 
and the R software (version 3.5.1; R Foundation for Statisti-
cal Computing, Vienna, Austria).

Results

Among 418 enrolled patients (296 males and 122 females; 
mean age, 60.1 years; Table 1), 3.6%, 13.2%, 36.6%, and 
23.7% patients had IDH mutation, ATRX loss, MGMT 
methylation, and EGFR amplification, respectively. The 
UpSet plot and Venn diagram of gene alteration infor-
mation (Fig. 1) showed mutual exclusivity between IDH 
mutation and EGFR amplification, indicating that a patient 
with an IDH mutation did not show EGFR amplification 
and vice versa. Also, every patient with an IDH mutation 
had MGMT or ATRX gene alteration or both. Therefore, 
there was no patient with an IDH mutation alone.

Patients were randomly divided into training (n = 292) 
and test (n = 126) sets (7:3 ratio), and the alteration status 

of the four genes did not significantly differ between the 
two sets (Table 1).

After training the BR and ECC models with the opti-
mized number of input features, we evaluated their per-
formance in training and test sets. The micro-averaged 
AUC for the test set was 0.804 and 0.842 in BR and ECC 
models, respectively (Supplementary Table 1). The perfor-
mance (AUC, cutoff value, sensitivity, specificity, positive 
predictive value, and negative predictive value) for each of 
the four genes was analyzed (Table 2). ECC model showed 
higher AUC than BR model for ATRX (0.822 vs. 0.775) 
and MGMT (0.761 vs. 0.653) predictions. AUCs of IDH 
prediction were comparable between the two models. The 
ECC model did not improve the EGFR prediction.

The mean absolute Shapley value for each of the selected 
input features was calculated to visualize the feature impor-
tance for the ECC model (Fig. 3). The classifier order of 
IDH > ATRX > MGMT > EGFR was chosen. When the pre-
diction result of IDH was fed to the ATRX classifier, it was 
the third important feature to predict ATRX status. In the 
MGMT classifier, prediction results from IDH mutation and 
ATRX loss were used as important features. The prediction 
result of IDH was the most important factor to make the 
MGMT prediction. Finally, IDH, ATRX, and MGMT pre-
diction results were used for the EGFR prediction, and they 

Table 1   Patient characteristics and gene status in the entire cohort and training and test sets

Numbers in parentheses are percentages
IDH isocitrate dehydrogenase, ATRX alpha-thalassemia/mental retardation syndrome X-linked, MGMT O-6-methylguanine-DNA methyltrans-
ferase, EGFR epidermal growth factor receptor
* Calculated using t-test for continuous variables and Chi square test for categorical variables
a Data are mean ± standard deviation

Entire cohort (N = 418) Training set (n = 292) Test set (n = 126) P value*

Clinical characteristics
 Age (years) a 60.1 ± 13.1 59.6 ± 13.0 61.3 ± 13.0 0.21
 Sex  < 0.01
  Male 296 (70.8) 224 (76.7) 72 (57.1)
  Female 122 (29.2) 68 (23.3) 54 (42.9)

 Genetic alteration status
 IDH mutation 0.78
  Negative 403 (96.4) 282 (96.6) 121 (96)
  Positive 15 (3.6) 10 (3.4) 5 (4.0)

 ATRX loss 0.89
  Negative 363 (86.8) 254 (87.0) 109 (86.5)
  Positive 55 (13.2) 38 (13.0) 17 (13.5)

 MGMT promoter methylation 0.18
  Negative 265 (63.4) 179 (61.3) 86 (68.3)
  Positive 153 (36.6) 113 (38.7) 40 (31.7)

 EGFR amplification 0.83
  Negative 319 (76.3) 223 (76.7) 95 (75.4)
  Positive 99 (23.7) 69 (23.3) 31 (24.6)
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had relatively similar importance. In the IDH classifier, the 
top three features with high SHAP values were coarseness 
(contrast-enhanced T1WI, CE mask), surface volume ratio 
(contrast-enhanced T1WI, CE mask), and maximal corre-
lation coefficient (contrast-enhanced T1WI and T2WI, CE 
mask). In the ATRX classifier, the top three features were 
strength (T1WI, CE mask), median (T1WI, CE mask), and 
IDH prediction. In the MGMT classifier, the top three fea-
tures were IDH prediction, short-run high gray-level empha-
sis (T2WI, CE mask), and ATRX prediction. Finally, for the 
EGFR prediction, the top three features were run entropy 
(T1WI, CE mask), high gray-level cone emphasis (T2WI, 
CE mask), and inverse variance (T1WI, T2 mask).

Discussion

In this study, we established the radiomics-based simulta-
neous multiple gene prediction model in glioblastoma and 
grade 4 astrocytoma, IDH-mutant. Our model predict the 
gene status of IDH, EGFR, MGMT, and ATRX, using T1WI, 
T2WI, FLAIR, and contrast-enhanced T1WI sequences. It 
was a significant investigation because few studies had previ-
ously explored the multi-label classification via the radiom-
ics approach in glioblastoma. Furthermore, we improved the 
multi-label classifier’s performance by applying the ECC 
model; the final model’s AUC was 0.842 in the test set.

The IDH mutation status is associated with glioma’s 
prognosis [6, 7]. Several studies have tried predicting the 
IDH status using MRI features [17, 35–37], and the sum-
mary sensitivity and specificity of studies that only included 
glioblastoma were 90% and 91%, respectively [38]. In our 
ECC model, coarseness, surface volume ratio, and maximal 
correlation coefficient from the CE mask were relatively 
important features; however, a direct comparison of the 
used radiomics features in the model is difficult because 
only a few articles mentioned the selected features and their 

importance in their models, and the classifier development 
process also varied [17, 39]. Therefore, further investigation 
of radiomic features’ biological meaning is needed.

A strong association exists between IDH and ATRX 
mutations [24]. Cancer cells harboring ATRX mutations 
exhibit chromatin instability and impaired DNA dam-
age response, making them vulnerable to DNA-damaging 
treatments [40]. An ATRX mutation is usually found in 
diffuse astrocytomas, generally exclusive to the 1/19q co-
deletion [41]. Few studies have investigated the correla-
tion between the imaging features and ATRX loss in glio-
blastoma [21, 37, 42]. Recently, Ahn et al. used VASARI, 
which is a system designed to enable consistent description 
of gliomas using a set of defined visual features and con-
trolled vocabulary, and found that IDH and ATRX mutations 
clustered according to their shared imaging features [42]. 
Another study tried to predict the ATRX loss via radiomics 
features in glioblastoma [21] and enumerated the four most 
important features. However, we did not find any important 
features in common. In our model, the probability of IDH 
mutation predicted by the prior chain was the third most 
important feature of the ATRX classifier.

MGMT promoter methylation is a favorable prognostic 
factor in glioblastoma, and patients with MGMT promoter 
methylation benefit from temozolomide [43, 44]. Previous 
studies reported around 70% prediction accuracy of MGMT 
promoter methylation using structural MRI, which is lower 
than IDH mutation prediction [18, 45, 46]. A study found 
that ill‐defined tumor borders, lower attenuation coefficients 
in computed tomography scans, lower fractional anisotropy, 
and increased apparent diffusion coefficient values are asso-
ciated with MGMT promoter methylation in a mixed group 
of WHO grade III and grade IV patients [47]. Ahn et al. 
showed that biomarkers based on apparent diffusion coef-
ficient and fractional anisotropy parametric maps are poor 
predictors of MGMT methylation, whereas capillary per-
meability (i.e., Ktrans) achieved an AUC of 0.76 in whole 

Table 2   The performance of models in the test set for each gene

AUC​ area under the receiver operating characteristic curve, TP true positive, FN false negative, TN true negative, FP false positive, CI confi-
dence interval
a Sensitivity, specificity, and their 95% confidence intervals are expressed as percentages

Method Gene AUC​ TP/FN/TN/FP Sensitivity (95% CI)* Specificity (95% CI)a

Binary relevance IDH 0.964 (0.922–1) 5/0/107/14 100 (47.8–100) 88.4 (81.3–93.5)
ATRX 0.775 (0.645–0.905) 9/8/104/5 52.9 (27.8–77%) 95.4 (89.6–98.5)
MGMT 0.653 (0.538–0.769) 15/17/73/21 46.9 (29.1–65.3) 77.7 (67.9–85.6)
EGFR 0.753 (0.659–0.847) 18/26/82/0 40.9 (26.3–56.8) 100 (95.6–100)

Ensemble classifier chain IDH 0.967 (0.921–1) 5/0/107/14 100 (47.8–100) 88.4 (81.3–93.5)
ATRX 0.822 (0.687–0.957) 12/5/93/16 70.6 (44–89.7) 85.3 (77.3–91.4)
MGMT 0.761 (0.669–0.853) 21/23/80/2 47.7 (32.5–63.3) 97.6 (91.5–99.7)
EGFR 0.743 (0.642–0.844) 26/6/55/39 81.2 (63.6–92.8) 58.5 (47.9–68.6)
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patient cohort [48]. Korfiatis et al. found that four features 
(cluster prominence, correlation, inertia, and Haralick cor-
relation) are associated with MGMT methylation [20]. In our 
study, the AUC for the MGMT methylation prediction was 
0.761 (ECC model). According to SHAP value analysis, the 
prediction result of IDH was the most important feature for 
the MGMT classifier. IDH mutation increases the overall 
genomic CpG methylation and is strongly associated with 
MGMT promoter methylation [49]. In our cohort, 14 of 15 
IDH-mutated patients had MGMT promoter methylation; 
therefore, IDH status could be an important predictor of 
MGMT status.

EGFR is a type of receptor tyrosine kinase, and its activa-
tion results in the activation of multiple downstream signal 
transduction pathways such as the PI3K/Akt/mTOR path-
way [50]. EGFR is altered in approximately 50% of glio-
blastoma patients. Therefore, detecting the EGFR aberra-
tion status could help classify the molecular subtypes and 
predict treatment response and prognosis in glioblastoma 
patients. Previous studies reported that EGFR amplification 
is not related to VASARI image features [51]. Hu et al. built 
multivariate predictive decision-tree models using radiomics 
for each glioblastoma driver gene and validated accuracies 
using leave-one-out cross-validation [22]. They listed sev-
eral EGFR mutation-related MRI texture features, discrete 
orthonormal Stockwell transform, gray-level co-occurrence 
matrix, the standard deviation of raw MRI signal of T2WI, 
and relative cerebral blood volume’s local binary product. 
They obtained approximately 75% accuracy using the deci-
sion-tree model. However, further study is needed because 
they did not mention specific features and did not investi-
gate correlations between several other driver genes. In our 
ECC model, EGFR prediction had the lowest AUC (0.743). 
The EGFR classifier used the results from IDH, ATRX, and 
MGMT classifiers; however, the EGFR classifier’s feature 
importance was not as high as the other classifiers, suggest-
ing that it is relatively difficult to evaluate EGFR status using 
structural MRI alone. Multiparametric MRI might improve 
the performance; therefore, further study using multipara-
metric MRI is needed.

As several genes are highly correlated in glioma, we 
implemented the multi-label classification. A common 
approach to multi-label classification is to transform a 
multi-label problem into one or more single-label prob-
lems. The most common approach is the BR method, 
whereby a multi-label problem is transformed into mul-
tiple binary problems. Although BR has the advantage of 
low computational complexity, its main disadvantage is 
that it does not take into account the correlations between 
labels. Another approach is CC, which links classifiers 
along a chain [34]. CC is based on the BR method but can 
take into account label correlations (Fig. 2); each model 
predicts in the order specified by the chain using the 

Fig. 3   The feature importance presented by mean absolute SHAP value 
for the prediction of each gene in the classifier chain model from IDH, 
ATRX, MGMT and EGFR classifier
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predictions of earlier models in the chain. Therefore, CC 
could overcome the BR method’s disadvantage of ignor-
ing label correlations while inheriting the BR method’s 
efficiency. CC is often applied in an ensemble framework 
whereby multiple chains with different orders of classifiers 
are applied to make the prediction [34, 52]. Our investi-
gation verified the higher performance of simultaneous 
multiple genotype prediction model (ECC model; con-
siders relationships among genetic alterations) than the 
performance of independent predictions of each genotype 
(BR model). Furthermore, we confirmed that each sub-
step gene prediction is affected by the previous prediction 
results in the chained classifier.

Our study has limitations. First, we could not build an 
independent, external test set from a different institution. 
Due to the relatively small number of cases with known 
molecular marker status, it was challenging to enroll enough 
cases for the external test set. Several open-source databases 
such as TCGA (https://​wiki.​cance​rimag​ingar​chive.​net/​displ​
ay/​Public/​TCGA-​GBM) are available; however, only a few 
cases had preoperative MRI and information regarding all 
four genetic alterations. Second, we used ML-SMOTE for 
training due to disproportionate numbers of patients with 
IDH and ATRX mutations, which may have impacted our 
model’s performance. In the presence of class imbalance, 
machine learning algorithms are biased towards predict-
ing the majority class as they do not have enough data to 
learn the patterns present in the minority class. The SMOTE 
algorithm takes the samples belonging to the minority class, 
chooses a random sample among the nearest neighbors of 
each, and synthesizes a new sample belonging to the same 
minority class [32]. However, in multi-label classification, 
the associations between the labels must be considered when 
creating new label sets. Thus, we used ML-SMOTE [33], 
which synthesizes new samples (i.e., radiomics features) 
belonging to multiple minority labels as well as a set of 
labels (i.e., the presence or absence of IDH, ATRX, MGMT, 
and EGFR mutations), taking into consideration the label 
correlation information. Finally, our chained classifier model 
was based only on four major genes. There may be more 
interacting genes that we could not include, and these four 
genes are possibly interacting indirectly. We could have bet-
ter estimated the complex interactions among many genetic 
mutations if we had more information regarding various 
genetic alterations.

In conclusion, we built a radiomics-based multiple gene 
prediction chained model that incorporates mutually exclu-
sive information of each genetic alteration in glioblastoma 
and grade 4 astrocytoma, IDH-mutant. The chained model 
used the prior classifiers’ prediction probabilities and per-
formed better than the simple bundle of classifiers.
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