38 38

Cited 0 times in

Microchannel network hydrogel induced ischemic blood perfusion connection

 Jung Bok Lee  ;  Dae-Hyun Kim  ;  Jeong-Kee Yoon  ;  Dan Bi Park  ;  Hye-Seon Kim  ;  Young Min Shin  ;  Wooyeol Baek  ;  Mi-Lan Kang  ;  Hyun Jung Kim  ;  Hak-Joon Sung 
 NATURE COMMUNICATIONS, Vol.11(1) : 615, 2020 
Journal Title
Issue Date
Angiogenesis induction into damaged sites has long been an unresolved issue. Local treatment with pro-angiogenic molecules has been the most common approach. However, this approach has critical side effects including inflammatory coupling, tumorous vascular activation, and off-target circulation. Here, the concept that a structure can guide desirable biological function is applied to physically engineer three-dimensional channel networks in implant sites, without any therapeutic treatment. Microchannel networks are generated in a gelatin hydrogel to overcome the diffusion limit of nutrients and oxygen three-dimensionally. Hydrogel implantation in mouse and porcine models of hindlimb ischemia rescues severely damaged tissues by the ingrowth of neighboring host vessels with microchannel perfusion. This effect is guided by microchannel size-specific regenerative macrophage polarization with the consequent functional recovery of endothelial cells. Multiple-site implantation reveals hypoxia and neighboring vessels as major causative factors of the beneficial function. This technique may contribute to the development of therapeutics for hypoxia/inflammatory-related diseases.
Files in This Item:
T202000345.pdf Download
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Medical Engineering (의학공학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Plastic and Reconstructive Surgery (성형외과학교실) > 1. Journal Papers
Yonsei Authors
Kang, Mi-Lan(강미란)
Kim, Dae-Hyun(김대현)
Baek, Wooyeol(백우열) ORCID logo https://orcid.org/0000-0002-6638-4110
Sung, Hak-Joon(성학준) ORCID logo https://orcid.org/0000-0003-2312-2484
Lee, Jung Bok(이정복) ORCID logo https://orcid.org/0000-0001-9227-2027
사서에게 알리기


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.