Keloids are characterized by excessive extracellular matrix (ECM) accumulation and persistent inflammation, leading to disfiguring scars and poor therapeutic outcomes. The α7 nicotinic acetylcholine receptor (α7nAChR) has emerged as a key modulator of inflammatory and fibrotic signaling. This study evaluated the antifibrotic effects of tropisetron, a clinically available α7nAChR agonist, in keloid fibroblasts (KFs) and a rat incisional scar model. In vitro, KFs exhibited reduced α7nAChR expression, which was restored by tropisetron in a dose-dependent manner. Tropisetron treatment significantly decreased KF viability, downregulated pro-fibrotic genes (COL1A1, COL3A1, α-SMA), and upregulated matrix metalloproteinases (MMP1 and MMP3). Additionally, it suppressed phosphorylation of Smad2/3 and reduced expression of NF-κB and TNF-α, indicating inhibition of both TGF-β and inflammatory pathways. In vivo, tropisetron-treated rats showed a ~40% reduction in scar area, improved collagen organization, and increased α7nAChR expression in scar tissue. Western blot analysis confirmed decreased levels of collagen I, p-Smad2/3, α-SMA, NF-κB, and TNF-α. These results indicate that tropisetron exerts dual antifibrotic and anti-inflammatory effects through α7nAChR-mediated signaling and enhanced ECM remodeling. This study provides the first evidence supporting α7nAChR activation as a promising therapeutic strategy for managing keloids and other fibrotic skin disorders.