3 3

Cited 0 times in

Cited 0 times in

Artificial intelligence for breast cancer screening in mammography (AI-STREAM): preliminary analysis of a prospective multicenter cohort study

Authors
 Chang, Yun-Woo  ;  Ryu, Jung Kyu  ;  An, Jin Kyung  ;  Choi, Nami  ;  Park, Young Mi  ;  Ko, Kyung Hee  ;  Han, Kyunghwa 
Citation
 NATURE COMMUNICATIONS, Vol.16(1), 2025-03 
Article Number
 2248 
Journal Title
NATURE COMMUNICATIONS
ISSN
 2041-1723 
Issue Date
2025-03
MeSH
Adult ; Aged ; Artificial Intelligence* ; Breast Neoplasms* / diagnosis ; Breast Neoplasms* / diagnostic imaging ; Early Detection of Cancer* / methods ; Female ; Humans ; Mammography* / methods ; Mass Screening / methods ; Middle Aged ; Prospective Studies ; Republic of Korea
Keywords
Artificial Intelligence ; Cancer ; Cohort Analysis ; Disease Severity ; Experimental Study ; Health Impact ; Womens Health ; Adult ; Aged ; Article ; Breast Cancer ; Cancer Diagnosis ; Cancer Screening ; Controlled Study ; Diagnostic Accuracy ; Female ; Human ; Major Clinical Study ; Mammography ; Middle Aged ; Multicenter Study ; Observational Study ; Preliminary Data ; Prospective Study ; Radiologist ; South Korea ; Tumor Biopsy ; Breast Tumor ; Clinical Trial ; Diagnosis ; Diagnostic Imaging ; Early Cancer Diagnosis ; Epidemiology ; Mass Screening ; Procedures ; Adult ; Aged ; Artificial Intelligence ; Breast Neoplasms ; Early Detection Of Cancer ; Female ; Humans ; Mammography ; Mass Screening ; Middle Aged ; Prospective Studies ; Radiologists ; Republic Of Korea
Abstract
Artificial intelligence (AI) improves the accuracy of mammography screening, but prospective evidence, particularly in a single-read setting, remains limited. This study compares the diagnostic accuracy of breast radiologists with and without AI-based computer-aided detection (AI-CAD) for screening mammograms in a real-world, single-read setting. A prospective multicenter cohort study is conducted within South Korea's national breast cancer screening program for women. The primary outcomes are screen-detected breast cancer within one year, with a focus on cancer detection rates (CDRs) and recall rates (RRs) of radiologists. A total of 24,543 women are included in the final cohort, with 140 (0.57%) screen-detected breast cancers. The CDR is significantly higher by 13.8% for breast radiologists using AI-CAD (n = 140 [5.70 parts per thousand]) compared to those without AI (n = 123 [5.01 parts per thousand]; p < 0.001), with no significant difference in RRs (p = 0.564). These preliminary results show a significant improvement in CDRs without affecting RRs in a radiologist's standard single-reading setting (ClinicalTrials.gov: NCT05024591).
Files in This Item:
88156.pdf Download
DOI
10.1038/s41467-025-57469-3
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
Yonsei Authors
Ko, Kyung Hee(고경희)
Han, Kyung Hwa(한경화)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/208696
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links