3 3

Cited 0 times in

Cited 0 times in

Artificial intelligence for breast cancer screening in mammography (AI-STREAM): preliminary analysis of a prospective multicenter cohort study

DC Field Value Language
dc.contributor.authorChang, Yun-Woo-
dc.contributor.authorRyu, Jung Kyu-
dc.contributor.authorAn, Jin Kyung-
dc.contributor.authorChoi, Nami-
dc.contributor.authorPark, Young Mi-
dc.contributor.authorKo, Kyung Hee-
dc.contributor.authorHan, Kyunghwa-
dc.date.accessioned2025-11-12T05:37:11Z-
dc.date.available2025-11-12T05:37:11Z-
dc.date.created2025-07-29-
dc.date.issued2025-03-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208696-
dc.description.abstractArtificial intelligence (AI) improves the accuracy of mammography screening, but prospective evidence, particularly in a single-read setting, remains limited. This study compares the diagnostic accuracy of breast radiologists with and without AI-based computer-aided detection (AI-CAD) for screening mammograms in a real-world, single-read setting. A prospective multicenter cohort study is conducted within South Korea&apos;s national breast cancer screening program for women. The primary outcomes are screen-detected breast cancer within one year, with a focus on cancer detection rates (CDRs) and recall rates (RRs) of radiologists. A total of 24,543 women are included in the final cohort, with 140 (0.57%) screen-detected breast cancers. The CDR is significantly higher by 13.8% for breast radiologists using AI-CAD (n = 140 [5.70 parts per thousand]) compared to those without AI (n = 123 [5.01 parts per thousand]; p < 0.001), with no significant difference in RRs (p = 0.564). These preliminary results show a significant improvement in CDRs without affecting RRs in a radiologist&apos;s standard single-reading setting (ClinicalTrials.gov: NCT05024591).-
dc.languageEnglish-
dc.publisherNature Pub. Group-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.subject.MESHAdult-
dc.subject.MESHAged-
dc.subject.MESHArtificial Intelligence*-
dc.subject.MESHBreast Neoplasms* / diagnosis-
dc.subject.MESHBreast Neoplasms* / diagnostic imaging-
dc.subject.MESHEarly Detection of Cancer* / methods-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMammography* / methods-
dc.subject.MESHMass Screening / methods-
dc.subject.MESHMiddle Aged-
dc.subject.MESHProspective Studies-
dc.subject.MESHRepublic of Korea-
dc.titleArtificial intelligence for breast cancer screening in mammography (AI-STREAM): preliminary analysis of a prospective multicenter cohort study-
dc.typeArticle-
dc.contributor.googleauthorChang, Yun-Woo-
dc.contributor.googleauthorRyu, Jung Kyu-
dc.contributor.googleauthorAn, Jin Kyung-
dc.contributor.googleauthorChoi, Nami-
dc.contributor.googleauthorPark, Young Mi-
dc.contributor.googleauthorKo, Kyung Hee-
dc.contributor.googleauthorHan, Kyunghwa-
dc.identifier.doi10.1038/s41467-025-57469-3-
dc.relation.journalcodeJ02293-
dc.identifier.eissn2041-1723-
dc.identifier.pmid40050619-
dc.subject.keywordArtificial Intelligence-
dc.subject.keywordCancer-
dc.subject.keywordCohort Analysis-
dc.subject.keywordDisease Severity-
dc.subject.keywordExperimental Study-
dc.subject.keywordHealth Impact-
dc.subject.keywordWomens Health-
dc.subject.keywordAdult-
dc.subject.keywordAged-
dc.subject.keywordArticle-
dc.subject.keywordBreast Cancer-
dc.subject.keywordCancer Diagnosis-
dc.subject.keywordCancer Screening-
dc.subject.keywordControlled Study-
dc.subject.keywordDiagnostic Accuracy-
dc.subject.keywordFemale-
dc.subject.keywordHuman-
dc.subject.keywordMajor Clinical Study-
dc.subject.keywordMammography-
dc.subject.keywordMiddle Aged-
dc.subject.keywordMulticenter Study-
dc.subject.keywordObservational Study-
dc.subject.keywordPreliminary Data-
dc.subject.keywordProspective Study-
dc.subject.keywordRadiologist-
dc.subject.keywordSouth Korea-
dc.subject.keywordTumor Biopsy-
dc.subject.keywordBreast Tumor-
dc.subject.keywordClinical Trial-
dc.subject.keywordDiagnosis-
dc.subject.keywordDiagnostic Imaging-
dc.subject.keywordEarly Cancer Diagnosis-
dc.subject.keywordEpidemiology-
dc.subject.keywordMass Screening-
dc.subject.keywordProcedures-
dc.subject.keywordAdult-
dc.subject.keywordAged-
dc.subject.keywordArtificial Intelligence-
dc.subject.keywordBreast Neoplasms-
dc.subject.keywordEarly Detection Of Cancer-
dc.subject.keywordFemale-
dc.subject.keywordHumans-
dc.subject.keywordMammography-
dc.subject.keywordMass Screening-
dc.subject.keywordMiddle Aged-
dc.subject.keywordProspective Studies-
dc.subject.keywordRadiologists-
dc.subject.keywordRepublic Of Korea-
dc.contributor.affiliatedAuthorKo, Kyung Hee-
dc.contributor.affiliatedAuthorHan, Kyunghwa-
dc.identifier.scopusid2-s2.0-86000299080-
dc.identifier.wosid001439786500033-
dc.citation.volume16-
dc.citation.number1-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, Vol.16(1), 2025-03-
dc.identifier.rimsid88156-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorArtificial Intelligence-
dc.subject.keywordAuthorCancer-
dc.subject.keywordAuthorCohort Analysis-
dc.subject.keywordAuthorDisease Severity-
dc.subject.keywordAuthorExperimental Study-
dc.subject.keywordAuthorHealth Impact-
dc.subject.keywordAuthorWomens Health-
dc.subject.keywordAuthorAdult-
dc.subject.keywordAuthorAged-
dc.subject.keywordAuthorArticle-
dc.subject.keywordAuthorBreast Cancer-
dc.subject.keywordAuthorCancer Diagnosis-
dc.subject.keywordAuthorCancer Screening-
dc.subject.keywordAuthorControlled Study-
dc.subject.keywordAuthorDiagnostic Accuracy-
dc.subject.keywordAuthorFemale-
dc.subject.keywordAuthorHuman-
dc.subject.keywordAuthorMajor Clinical Study-
dc.subject.keywordAuthorMammography-
dc.subject.keywordAuthorMiddle Aged-
dc.subject.keywordAuthorMulticenter Study-
dc.subject.keywordAuthorObservational Study-
dc.subject.keywordAuthorPreliminary Data-
dc.subject.keywordAuthorProspective Study-
dc.subject.keywordAuthorRadiologist-
dc.subject.keywordAuthorSouth Korea-
dc.subject.keywordAuthorTumor Biopsy-
dc.subject.keywordAuthorBreast Tumor-
dc.subject.keywordAuthorClinical Trial-
dc.subject.keywordAuthorDiagnosis-
dc.subject.keywordAuthorDiagnostic Imaging-
dc.subject.keywordAuthorEarly Cancer Diagnosis-
dc.subject.keywordAuthorEpidemiology-
dc.subject.keywordAuthorMass Screening-
dc.subject.keywordAuthorProcedures-
dc.subject.keywordAuthorAdult-
dc.subject.keywordAuthorAged-
dc.subject.keywordAuthorArtificial Intelligence-
dc.subject.keywordAuthorBreast Neoplasms-
dc.subject.keywordAuthorEarly Detection Of Cancer-
dc.subject.keywordAuthorFemale-
dc.subject.keywordAuthorHumans-
dc.subject.keywordAuthorMammography-
dc.subject.keywordAuthorMass Screening-
dc.subject.keywordAuthorMiddle Aged-
dc.subject.keywordAuthorProspective Studies-
dc.subject.keywordAuthorRadiologists-
dc.subject.keywordAuthorRepublic Of Korea-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusBENEFITS-
dc.subject.keywordPlusHARMS-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.identifier.articleno2248-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.