67 157

Cited 0 times in

Three-dimensionally printed biphasic calcium phosphate blocks with different pore diameters for regeneration in rabbit calvarial defects

 Young-Wook Seo  ;  Jin-Young Park  ;  Da-Na Lee  ;  Xiang Jin  ;  Jae-Kook Cha  ;  Jeong-Won Paik  ;  Seong-Ho Choi 
 Biomaterials Research, Vol.26(1) : 25, 2022-06 
Journal Title
Biomaterials Research
Issue Date
Animals ; Beta tricalcium phosphate ; Bone regeneration ; Hydroxyapatite ; Pore diameter
Background: Biphasic calcium phosphate (BCP) is the most frequently used synthetic bone substitutes, which comprises a combination of hydroxyapatite (HA) and beta-tricalcium phosphate (b-TCP). Thanks to the recent advances in digital dentistry and three-dimensional (3D) printing technology, synthetic block bone substitutes can be customized to fit individual defect morphologies. The diameter of the pores can influence the rate of bone formation and material resorption. The aim of this study was to compare three-dimensionally printed biphasic calcium phosphate (BCP) block bone substitutes with different pore diameters (0.8-, 1.0-, and 1.2- mm) for use in the regeneration of rabbit calvarial defects.

Methods: Four circular defects were formed on the calvaria of ten rabbits. Each defect was randomly allocated to one of the following study groups: (i) control group, (ii) 0.8-mm group, (iii) 1.0-mm group, and (iv) 1.2-mm group. All specimens were postoperatively harvested at 2 and 8 weeks, and radiographic and histomorphometric analyses were performed on the samples.

Results: Histologically, the BCP blocks remained unresorbed up to 8 weeks, and new bone formation occurred within the porous structures of the blocks. After the short healing period of 2 weeks, histomorphometric analysis indicated that new bone formation was significantly greater in the BCP groups compared with the control (p < 0.05). However, there were no significant differences between the groups with different pore diameters (p > 0.05). At 8 weeks, only the 1.0-mm group (3.42 ± 0.48 mm2, mean ± standard deviation) presented a significantly larger area of new bone compared with the control (2.26 ± 0.59 mm2) (p < 0.05). Among the BCP groups, the 1.0- and 1.2-mm groups exhibited significantly larger areas of new bone compared with the 0.8-mm group (3.42 ± 0.48 and 3.04 ± 0.66 vs 1.60 ± 0.70 mm2, respectively).

Conclusions: Within the limitations of this study, the BCP block bone substitutes can be applied to bone defects for successful bone regeneration. Future studies should investigate more-challenging defect configurations prior to considering clinical applications.
Files in This Item:
T202202655.pdf Download
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Periodontics (치주과학교실) > 1. Journal Papers
Yonsei Authors
Park, Jin Young(박진영)
Paik, Jeong Won(백정원) ORCID logo https://orcid.org/0000-0002-5554-8503
Cha, Jae Kook(차재국) ORCID logo https://orcid.org/0000-0001-6817-9834
Choi, Seong Ho(최성호) ORCID logo https://orcid.org/0000-0001-6704-6124
사서에게 알리기


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.