This study aimed to investigate the cortical neural correlates of dementia conversion in Parkinson's disease with mild cognitive impairment (PD-MCI). We classified 112 patients with drug-naïve early stage PD meeting criteria for PD-MCI into either PD with dementia (PDD) converters (n = 34) or nonconverters (n = 78), depending on whether they developed dementia within 4 years of PD diagnosis. Cortical thickness analyses were performed in 34 PDD converters and 34 matched nonconverters. Additionally, a linear discriminant analysis was performed to distinguish PDD converters from nonconverters using cortical thickness of the regions that differed between the two groups. The PDD converters had higher frequencies of multiple domain MCI and amnestic MCI with storage failure, and poorer cognitive performances on frontal/executive, memory, and language function domains than did the nonconverters. Cortical thinning extending from the posterior cortical area into the frontal region was observed in PDD converters relative to nonconverters. The discriminant analysis showed that the prediction model with two cortical thickness variables in the right medial superior frontal and left olfactory cortices optimally distinguished PDD converters from nonconverters. Our data suggest that cortical thinning in the frontal areas including the olfactory cortex is a marker for early dementia conversion in PD-MCI.