0 78

Cited 3 times in

Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer

Authors
 Na Lae Eun  ;  Daesung Kang  ;  Eun Ju Son  ;  Jeong Seon Park  ;  Ji Hyun Youk  ;  Jeong-Ah Kim  ;  Hye Mi Gweon  
Citation
 RADIOLOGY, Vol.294(1) : 31-41, 2020 
Journal Title
 RADIOLOGY 
ISSN
 0033-8419 
Issue Date
2020
Abstract
Background Previous studies have suggested that texture analysis is a promising tool in the diagnosis, characterization, and assessment of treatment response in various cancer types. Therefore, application of texture analysis may be helpful for early prediction of pathologic response in breast cancer. Purpose To investigate whether texture analysis of features from MRI is associated with pathologic complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer. Materials and Methods This retrospective study included 136 women (mean age, 47.9 years; range, 31-70 years) who underwent NAC and subsequent surgery for breast cancer between January 2012 and August 2017. Patients were monitored with 3.0-T MRI before (pretreatment) and after (midtreatment) three or four cycles of NAC. Texture analysis was performed at pre- and midtreatment T2-weighted MRI, contrast material-enhanced T1-weighted MRI, diffusion-weighted MRI, and apparent diffusion coefficient (ADC) mapping by using commercial software. A random forest method was applied to build a predictive model for classifying those with pCR with use of texture parameters. Diagnostic performance for predicting pCR was assessed and compared with that of six other machine learning classifiers (adaptive boosting, decision tree, k-nearest neighbor, linear support vector machine, naive Bayes, and linear discriminant analysis) by using the Wald test and DeLong method. Results Forty of the 136 patients (29%) achieved pCR after NAC. In the prediction of pCR, the random forest classifier showed the lowest diagnostic performance with pretreatment ADC (area under the receiver operating characteristic curve [AUC], 0.53; 95% confidence interval: 0.44, 0.61) and the highest diagnostic performance with midtreatment contrast-enhanced T1-weighted MRI (AUC, 0.82; 95% confidence interval: 0.74, 0.88) among pre- and midtreatment T2-weighted MRI, contrast-enhanced T1-weighted MRI, diffusion-weighted MRI, and ADC mapping. Conclusion Texture parameters using a random forest method of contrast-enhanced T1-weighted MRI at midtreatment of neoadjuvant chemotherapy were valuable and associated with pathologic complete response in breast cancer.
Full Text
https://pubs.rsna.org/doi/10.1148/radiol.2019182718
DOI
10.1148/radiol.2019182718
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
Yonsei Authors
Gweon, Hye Mi(권혜미) ORCID logo https://orcid.org/0000-0002-3054-1532
Kim, Jeong Ah(김정아) ORCID logo https://orcid.org/0000-0003-4949-4913
Son, Eun Ju(손은주) ORCID logo https://orcid.org/0000-0002-7895-0335
Youk, Ji Hyun(육지현) ORCID logo https://orcid.org/0000-0002-7787-780X
Eun, Na Lae(은나래) ORCID logo https://orcid.org/0000-0002-7299-3051
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/174928
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links