Cited 235 times in
Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 김형범 | - |
dc.contributor.author | 김희권 | - |
dc.contributor.author | 송명재 | - |
dc.contributor.author | 김영광 | - |
dc.date.accessioned | 2018-08-28T16:46:13Z | - |
dc.date.available | 2018-08-28T16:46:13Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 1087-0156 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/161917 | - |
dc.description.abstract | We present two algorithms to predict the activity of AsCpf1 guide RNAs. Indel frequencies for 15,000 target sequences were used in a deep-learning framework based on a convolutional neural network to train Seq-deepCpf1. We then incorporated chromatin accessibility information to create the better-performing DeepCpf1 algorithm for cell lines for which such information is available and show that both algorithms outperform previous machine learning algorithms on our own and published data sets. | - |
dc.description.statementOfResponsibility | restriction | - |
dc.language | English | - |
dc.publisher | Nature America Publishing | - |
dc.relation.isPartOf | NATURE BIOTECHNOLOGY | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/2.0/kr/ | - |
dc.title | Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine | - |
dc.contributor.department | Dept. of Pharmacology | - |
dc.contributor.googleauthor | Hui Kwon Kim | - |
dc.contributor.googleauthor | Seonwoo Min | - |
dc.contributor.googleauthor | Myungjae Song | - |
dc.contributor.googleauthor | Soobin Jung | - |
dc.contributor.googleauthor | Jae Woo Choi | - |
dc.contributor.googleauthor | Younggwang Kim | - |
dc.contributor.googleauthor | Sangeun Lee | - |
dc.contributor.googleauthor | Sungroh Yoon | - |
dc.contributor.googleauthor | Hyongbum Henry Kim | - |
dc.identifier.doi | 10.1038/nbt.4061 | - |
dc.contributor.localId | A01148 | - |
dc.relation.journalcode | J02290 | - |
dc.identifier.eissn | 1546-1696 | - |
dc.identifier.pmid | 29431740 | - |
dc.identifier.url | http://www.nature.com/articles/nbt.4061 | - |
dc.contributor.alternativeName | Kim, Hyongbum | - |
dc.contributor.affiliatedAuthor | Kim, Hyongbum | - |
dc.citation.volume | 36 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 239 | - |
dc.citation.endPage | 241 | - |
dc.identifier.bibliographicCitation | NATURE BIOTECHNOLOGY, Vol.36(3) : 239-241, 2018 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.