diffusion tensor image ; drug induced parkinsonism ; fractional anisotropy ; mean diffusivity ; microstructure ; white matter
Abstract
Drug-induced parkinsonism (DIP) is the second most common etiology of parkinsonism. And yet, there is little information on structural imaging in DIP to elucidate the accurate underlying pathomechanisms. To investigate microstructural white matter (WM) in patients with DIP using diffusion tensor image and to determine its relationship to severity of parkinsonian motor symptoms and cognitive function. A total of 42 patients with DIP, 65 with Parkinson's disease, and 33 control subjects were recruited from a movement disorders outpatient clinic. We performed comparative analysis of fractional anisotropy (FA) and mean diffusivity (MD) values among groups using tract-based spatial statistics. Correlation analysis between WM integrity and parkinsonian motor symptoms and cognitive performance was also performed in DIP patients using voxel-wise statistical analysis. DIP patients had significantly lower FA and higher MD values over widespread WM areas than control subjects. The patients with DIP had poor cognitive performance relative to control subjects, which correlated well with WM properties. Additionally, the parkinsonian motor symptoms were negatively correlated with FA values. In contrast, exposure time to the offending drugs prior to the development of parkinsonism or duration of parkinsonism showed no significant association with FA or MD values. The present study demonstrates that disruption of the WM microstructure is extensive in patients with DIP, and it is correlated with clinical parameters of parkinsonism and cognitive performance. This suggests that DIP may be reflective of underlying abnormality of microstructural WM.