Cited 0 times in

81 15

Gustatory receptors required for avoiding the insecticide L-canavanine

 Youngseok Lee ; Min Jung Kang ; Craig Montell ; Seok Jun Moon ; Chae Uk Cheong ; Jaewon Shim 
 Journal of Neuroscience, Vol.32(4) : 1429~1435, 2012 
Journal Title
 Journal of Neuroscience 
Issue Date
Insect survival depends on contact chemosensation to sense and avoid consuming plant-derived insecticides, such as L-canavanine. Members of a family of ∼60 gustatory receptors (GRs) comprise the main peripheral receptors responsible for taste sensation in Drosophila. However, the roles of most Drosophila GRs are unknown. In addition to GRs, a G protein-coupled receptor, DmXR, has been reported to be required for detecting L-canavanine. Here, we showed that GRs are essential for responding to L-canavanine and that flies missing DmXR displayed normal L-canavanine avoidance and L-canavanine-evoked action potentials. Mutations disrupting either Gr8a or Gr66a resulted in an inability to detect L-canavanine. We found that L-canavanine stimulated action potentials in S-type sensilla, which were where Gr8a and Gr66a were both expressed, but not in Gr66a-expressing sensilla that did not express Gr8a. L-canavanine-induced action potentials were also abolished in the Gr8a and Gr66a mutant animals. Gr8a was narrowly required for responding to L-canavanine, in contrast to Gr66a, which was broadly required for responding to other noxious tastants. Our data suggest that GR8a and GR66a are subunits of an L-canavanine receptor and that GR8a contributes to the specificity for L-canavanine.
Appears in Collections:
1. 연구논문 > 1. College of Medicine > Dept. of Life Science
1. 연구논문 > 2. College of Dentistry > Dept. of Oral Biology
Yonsei Authors
사서에게 알리기
Files in This Item:
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.