Dental caries caused by cariogenic biofilms is a significant challenge in modern dentistry, especially with aligner treatments, where biofilms can easily build up during prolonged use and lead to serious risks. Traditional antimicrobial methods focus on bacterial killing and often overlook the vital task of removing the biofilm matrix, allowing the quick reattachment of bacteria. In this study, we introduce an osmotic-driven biofilm removal strategy that harnesses osmotic dynamics to remove entire biofilm structures physically. Internal osmotic pressure is generated by a precisely designed cationic copolymer, triggering controlled detachment of the biofilm matrix. When tested in vitro on Streptococcus mutans biofilms grown on dental aligners and in hard-to-reach interproximal spaces, our method eliminated biofilms more efficiently than traditional cleaning methods. The technique showed concentration-dependent cytotoxicity, highlighting the need for further polymer optimization. Overall, our osmotic-driven biofilm removal strategy significantly advances biofilm control strategies, offering a novel solution for improving oral health and presenting a potential physical removal method for medical settings.