0 33

Cited 0 times in

Cited 0 times in

AI for Lesion Detection in Musculoskeletal Radiology

DC Field Value Language
dc.contributor.authorKim, Sungjun-
dc.contributor.authorLee, Hong-Seon-
dc.contributor.authorHwang, Sangchul-
dc.contributor.authorYoon, Youngno-
dc.date.accessioned2025-12-03T08:18:33Z-
dc.date.available2025-12-03T08:18:33Z-
dc.date.created2025-11-21-
dc.date.issued2025-09-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209434-
dc.description.abstractThis review provides an overview of the latest trends in lesion detection using AI in musculoskeletal imaging. It describes the types of deep learning networks used in detection AI and briefly explains their principles. Fracture-detection AI has shown improved sensitivity and reduced reporting time in multiple meta-analyses, and real-world validation in clinical settings has begun. Although many AIs have been developed to detect joint injuries and degenerative changes in MRI and CT/MRI detection models for bone metastasis and multiple myeloma, they have not yet reached a robust validation stage. Achieving clinical value requires attention to explainability, external validation and post-market monitoring, Picture Archiving Communicating System (PACS)-level integration, and legal and ethical issues and, therefore, proactive adoption by radiology professionals.-
dc.language영어-
dc.publisherKOREAN SOCIETY OF RADIOLOGY-
dc.relation.isPartOfJOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY-
dc.titleAI for Lesion Detection in Musculoskeletal Radiology-
dc.title.alternative근골격계 영상의학 분야의 병변 탐지형 인공지능-
dc.typeArticle-
dc.contributor.googleauthorKim, Sungjun-
dc.contributor.googleauthorLee, Hong-Seon-
dc.contributor.googleauthorHwang, Sangchul-
dc.contributor.googleauthorYoon, Youngno-
dc.identifier.doi10.3348/jksr.2025.0081-
dc.identifier.pmid41113381-
dc.subject.keywordArtificial Intelligence-
dc.subject.keywordLesion Detection-
dc.subject.keywordMusculoskeletal Radiology-
dc.subject.keywordBone Fractures-
dc.subject.keywordDegenerative Disease-
dc.subject.keywordBone Neoplasms-
dc.contributor.affiliatedAuthorKim, Sungjun-
dc.contributor.affiliatedAuthorLee, Hong-Seon-
dc.contributor.affiliatedAuthorHwang, Sangchul-
dc.identifier.scopusid2-s2.0-105022063276-
dc.identifier.wosid001585985800001-
dc.citation.volume86-
dc.citation.number5-
dc.citation.startPage608-
dc.citation.endPage623-
dc.identifier.bibliographicCitationJOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY, Vol.86(5) : 608-623, 2025-09-
dc.identifier.rimsid90115-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorArtificial Intelligence-
dc.subject.keywordAuthorLesion Detection-
dc.subject.keywordAuthorMusculoskeletal Radiology-
dc.subject.keywordAuthorBone Fractures-
dc.subject.keywordAuthorDegenerative Disease-
dc.subject.keywordAuthorBone Neoplasms-
dc.subject.keywordPlusDEEP-LEARNING-MODEL-
dc.subject.keywordPlusARTIFICIAL-INTELLIGENCE-
dc.subject.keywordPlusBONE METASTASES-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusDIAGNOSIS-
dc.type.docTypeArticle-
dc.identifier.kciidART003248112-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Research Institute (부설연구소) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.