Cited 0 times in 
Cited 0 times in 
AI for Lesion Detection in Musculoskeletal Radiology
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Kim, Sungjun | - |
| dc.contributor.author | Lee, Hong-Seon | - |
| dc.contributor.author | Hwang, Sangchul | - |
| dc.contributor.author | Yoon, Youngno | - |
| dc.date.accessioned | 2025-12-03T08:18:33Z | - |
| dc.date.available | 2025-12-03T08:18:33Z | - |
| dc.date.created | 2025-11-21 | - |
| dc.date.issued | 2025-09 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/209434 | - |
| dc.description.abstract | This review provides an overview of the latest trends in lesion detection using AI in musculoskeletal imaging. It describes the types of deep learning networks used in detection AI and briefly explains their principles. Fracture-detection AI has shown improved sensitivity and reduced reporting time in multiple meta-analyses, and real-world validation in clinical settings has begun. Although many AIs have been developed to detect joint injuries and degenerative changes in MRI and CT/MRI detection models for bone metastasis and multiple myeloma, they have not yet reached a robust validation stage. Achieving clinical value requires attention to explainability, external validation and post-market monitoring, Picture Archiving Communicating System (PACS)-level integration, and legal and ethical issues and, therefore, proactive adoption by radiology professionals. | - |
| dc.language | 영어 | - |
| dc.publisher | KOREAN SOCIETY OF RADIOLOGY | - |
| dc.relation.isPartOf | JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY | - |
| dc.title | AI for Lesion Detection in Musculoskeletal Radiology | - |
| dc.title.alternative | 근골격계 영상의학 분야의 병변 탐지형 인공지능 | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Kim, Sungjun | - |
| dc.contributor.googleauthor | Lee, Hong-Seon | - |
| dc.contributor.googleauthor | Hwang, Sangchul | - |
| dc.contributor.googleauthor | Yoon, Youngno | - |
| dc.identifier.doi | 10.3348/jksr.2025.0081 | - |
| dc.identifier.pmid | 41113381 | - |
| dc.subject.keyword | Artificial Intelligence | - |
| dc.subject.keyword | Lesion Detection | - |
| dc.subject.keyword | Musculoskeletal Radiology | - |
| dc.subject.keyword | Bone Fractures | - |
| dc.subject.keyword | Degenerative Disease | - |
| dc.subject.keyword | Bone Neoplasms | - |
| dc.contributor.affiliatedAuthor | Kim, Sungjun | - |
| dc.contributor.affiliatedAuthor | Lee, Hong-Seon | - |
| dc.contributor.affiliatedAuthor | Hwang, Sangchul | - |
| dc.identifier.scopusid | 2-s2.0-105022063276 | - |
| dc.identifier.wosid | 001585985800001 | - |
| dc.citation.volume | 86 | - |
| dc.citation.number | 5 | - |
| dc.citation.startPage | 608 | - |
| dc.citation.endPage | 623 | - |
| dc.identifier.bibliographicCitation | JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY, Vol.86(5) : 608-623, 2025-09 | - |
| dc.identifier.rimsid | 90115 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Artificial Intelligence | - |
| dc.subject.keywordAuthor | Lesion Detection | - |
| dc.subject.keywordAuthor | Musculoskeletal Radiology | - |
| dc.subject.keywordAuthor | Bone Fractures | - |
| dc.subject.keywordAuthor | Degenerative Disease | - |
| dc.subject.keywordAuthor | Bone Neoplasms | - |
| dc.subject.keywordPlus | DEEP-LEARNING-MODEL | - |
| dc.subject.keywordPlus | ARTIFICIAL-INTELLIGENCE | - |
| dc.subject.keywordPlus | BONE METASTASES | - |
| dc.subject.keywordPlus | SYSTEM | - |
| dc.subject.keywordPlus | DIAGNOSIS | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART003248112 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
| dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.