0 47

Cited 0 times in

Cited 0 times in

Evaluation and prediction of guide RNA activities in genome-editing tools

Authors
 Kim, Hui Kwon  ;  Kim, Hyongbum Henry 
Citation
 NATURE REVIEWS BIOENGINEERING, 2025-08 
Journal Title
 NATURE REVIEWS BIOENGINEERING 
ISSN
 2731-6092 
Issue Date
2025-08
Abstract
CRISPR genome-editing tools, including Cas9 and Cas12a nucleases, base editors and prime editors, have revolutionized genome manipulation across various species and cell types. These tools have undergone continuous improvement as new variants or types of editors have been generated to improve their efficiency, specificity and applicability. However, given the vast array of genome editors and the multitude of designable guide RNAs, selecting the optimal combinations for efficient and precise genome editing has become increasingly challenging, especially under variable experimental conditions. To address this issue, several methods for evaluating genome-editing tools in a high-throughput manner have been developed. The resulting large datasets of editing efficiencies or specificities have been used to develop machine learning models that predict efficiency and specificity, greatly facilitating the optimal selection of genome editors and guide RNAs. Here, we review recent developments in high-throughput evaluations and machine learning-based predictions of genome-editing efficiencies and/or off-target effects, together with recent advances in diverse genome-editing tools. We also cover artificial intelligence-based development and evolution of genome-editing tools.
Full Text
https://www.nature.com/articles/s44222-025-00352-z
DOI
10.1038/s44222-025-00352-z
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pharmacology (약리학교실) > 1. Journal Papers
Yonsei Authors
Kim, Hyongbum(김형범) ORCID logo https://orcid.org/0000-0002-4693-738X
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/208076
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links