0 3

Cited 0 times in

Cited 0 times in

Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study

Authors
 Hamed Akbari  ;  Spyridon Bakas  ;  Chiharu Sako  ;  Anahita Fathi Kazerooni  ;  Javier Villanueva-Meyer  ;  Jose A Garcia  ;  Elizabeth Mamourian  ;  Fang Liu  ;  Quy Cao  ;  Russell T Shinohara  ;  Ujjwal Baid  ;  Alexander Getka  ;  Sarthak Pati  ;  Ashish Singh  ;  Evan Calabrese  ;  Susan Chang  ;  Jeffrey Rudie  ;  Aristeidis Sotiras  ;  Pamela LaMontagne  ;  Daniel S Marcus  ;  Mikhail Milchenko  ;  Arash Nazeri  ;  Carmen Balana  ;  Jaume Capellades  ;  Josep Puig  ;  Chaitra Badve  ;  Jill S Barnholtz-Sloan  ;  Andrew E Sloan  ;  Vachan Vadmal  ;  Kristin Waite  ;  Murat Ak  ;  Rivka R Colen  ;  Yae Won Park  ;  Sung Soo Ahn  ;  Jong Hee Chang  ;  Yoon Seong Choi  ;  Seung-Koo Lee  ;  Gregory S Alexander  ;  Ayesha S Ali  ;  Adam P Dicker  ;  Adam E Flanders  ;  Spencer Liem  ;  Joseph Lombardo  ;  Wenyin Shi  ;  Gaurav Shukla  ;  Brent Griffith  ;  Laila M Poisson  ;  Lisa R Rogers  ;  Aikaterini Kotrotsou  ;  Thomas C Booth  ;  Rajan Jain  ;  Matthew Lee  ;  Abhishek Mahajan  ;  Arnab Chakravarti  ;  Joshua D Palmer  ;  Dominic DiCostanzo  ;  Hassan Fathallah-Shaykh  ;  Santiago Cepeda  ;  Orazio Santo Santonocito  ;  Anna Luisa Di Stefano  ;  Benedikt Wiestler  ;  Elias R Melhem  ;  Graeme F Woodworth  ;  Pallavi Tiwari  ;  Pablo Valdes  ;  Yuji Matsumoto  ;  Yoshihiro Otani  ;  Ryoji Imoto  ;  Mariam Aboian  ;  Shinichiro Koizumi  ;  Kazuhiko Kurozumi  ;  Toru Kawakatsu  ;  Kimberley Alexander  ;  Laveniya Satgunaseelan  ;  Aaron M Rulseh  ;  Stephen J Bagley  ;  Michel Bilello  ;  Zev A Binder  ;  Steven Brem  ;  Arati S Desai  ;  Robert A Lustig  ;  Eileen Maloney  ;  Timothy Prior  ;  Nduka Amankulor  ;  MacLean P Nasrallah  ;  Donald M O'Rourke  ;  Suyash Mohan  ;  Christos Davatzikos  ;  ReSPOND consortium 
Citation
 NEURO-ONCOLOGY, Vol.27(4) : 1102-1115, 2025-05 
Journal Title
NEURO-ONCOLOGY
ISSN
 1522-8517 
Issue Date
2025-05
MeSH
Adult ; Aged ; Brain Neoplasms* / classification ; Brain Neoplasms* / diagnostic imaging ; Brain Neoplasms* / mortality ; Brain Neoplasms* / pathology ; Female ; Follow-Up Studies ; Glioblastoma* / classification ; Glioblastoma* / diagnostic imaging ; Glioblastoma* / mortality ; Glioblastoma* / pathology ; Humans ; Machine Learning* ; Magnetic Resonance Imaging / methods ; Male ; Middle Aged ; Prognosis ; Survival Rate ; Young Adult
Keywords
glioblastoma ; machine learning ; mpMRI ; prognostic subgrouping ; survival
Abstract
Background: Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification.

Methods: We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]).

Results: The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95% CI: 1.43-1.84, P < .001) and 3.48 (95% CI: 2.94-4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort.

Conclusions: Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.
Full Text
https://academic.oup.com/neuro-oncology/article-abstract/27/4/1102/7922273
DOI
10.1093/neuonc/noae260
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
Yonsei Authors
Park, Yae Won(박예원) ORCID logo https://orcid.org/0000-0001-8907-5401
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/207672
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links