0 3

Cited 0 times in

Cited 0 times in

Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study

DC Field Value Language
dc.contributor.author박예원-
dc.date.accessioned2025-10-17T08:10:02Z-
dc.date.available2025-10-17T08:10:02Z-
dc.date.issued2025-05-
dc.identifier.issn1522-8517-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207672-
dc.description.abstractBackground: Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification. Methods: We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]). Results: The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95% CI: 1.43-1.84, P < .001) and 3.48 (95% CI: 2.94-4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort. Conclusions: Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherOxford University Press-
dc.relation.isPartOfNEURO-ONCOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAdult-
dc.subject.MESHAged-
dc.subject.MESHBrain Neoplasms* / classification-
dc.subject.MESHBrain Neoplasms* / diagnostic imaging-
dc.subject.MESHBrain Neoplasms* / mortality-
dc.subject.MESHBrain Neoplasms* / pathology-
dc.subject.MESHFemale-
dc.subject.MESHFollow-Up Studies-
dc.subject.MESHGlioblastoma* / classification-
dc.subject.MESHGlioblastoma* / diagnostic imaging-
dc.subject.MESHGlioblastoma* / mortality-
dc.subject.MESHGlioblastoma* / pathology-
dc.subject.MESHHumans-
dc.subject.MESHMachine Learning*-
dc.subject.MESHMagnetic Resonance Imaging / methods-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHPrognosis-
dc.subject.MESHSurvival Rate-
dc.subject.MESHYoung Adult-
dc.titleMachine learning-based prognostic subgrouping of glioblastoma: A multicenter study-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiology (영상의학교실)-
dc.contributor.googleauthorHamed Akbari-
dc.contributor.googleauthorSpyridon Bakas-
dc.contributor.googleauthorChiharu Sako-
dc.contributor.googleauthorAnahita Fathi Kazerooni-
dc.contributor.googleauthorJavier Villanueva-Meyer-
dc.contributor.googleauthorJose A Garcia-
dc.contributor.googleauthorElizabeth Mamourian-
dc.contributor.googleauthorFang Liu-
dc.contributor.googleauthorQuy Cao-
dc.contributor.googleauthorRussell T Shinohara-
dc.contributor.googleauthorUjjwal Baid-
dc.contributor.googleauthorAlexander Getka-
dc.contributor.googleauthorSarthak Pati-
dc.contributor.googleauthorAshish Singh-
dc.contributor.googleauthorEvan Calabrese-
dc.contributor.googleauthorSusan Chang-
dc.contributor.googleauthorJeffrey Rudie-
dc.contributor.googleauthorAristeidis Sotiras-
dc.contributor.googleauthorPamela LaMontagne-
dc.contributor.googleauthorDaniel S Marcus-
dc.contributor.googleauthorMikhail Milchenko-
dc.contributor.googleauthorArash Nazeri-
dc.contributor.googleauthorCarmen Balana-
dc.contributor.googleauthorJaume Capellades-
dc.contributor.googleauthorJosep Puig-
dc.contributor.googleauthorChaitra Badve-
dc.contributor.googleauthorJill S Barnholtz-Sloan-
dc.contributor.googleauthorAndrew E Sloan-
dc.contributor.googleauthorVachan Vadmal-
dc.contributor.googleauthorKristin Waite-
dc.contributor.googleauthorMurat Ak-
dc.contributor.googleauthorRivka R Colen-
dc.contributor.googleauthorYae Won Park-
dc.contributor.googleauthorSung Soo Ahn-
dc.contributor.googleauthorJong Hee Chang-
dc.contributor.googleauthorYoon Seong Choi-
dc.contributor.googleauthorSeung-Koo Lee-
dc.contributor.googleauthorGregory S Alexander-
dc.contributor.googleauthorAyesha S Ali-
dc.contributor.googleauthorAdam P Dicker-
dc.contributor.googleauthorAdam E Flanders-
dc.contributor.googleauthorSpencer Liem-
dc.contributor.googleauthorJoseph Lombardo-
dc.contributor.googleauthorWenyin Shi-
dc.contributor.googleauthorGaurav Shukla-
dc.contributor.googleauthorBrent Griffith-
dc.contributor.googleauthorLaila M Poisson-
dc.contributor.googleauthorLisa R Rogers-
dc.contributor.googleauthorAikaterini Kotrotsou-
dc.contributor.googleauthorThomas C Booth-
dc.contributor.googleauthorRajan Jain-
dc.contributor.googleauthorMatthew Lee-
dc.contributor.googleauthorAbhishek Mahajan-
dc.contributor.googleauthorArnab Chakravarti-
dc.contributor.googleauthorJoshua D Palmer-
dc.contributor.googleauthorDominic DiCostanzo-
dc.contributor.googleauthorHassan Fathallah-Shaykh-
dc.contributor.googleauthorSantiago Cepeda-
dc.contributor.googleauthorOrazio Santo Santonocito-
dc.contributor.googleauthorAnna Luisa Di Stefano-
dc.contributor.googleauthorBenedikt Wiestler-
dc.contributor.googleauthorElias R Melhem-
dc.contributor.googleauthorGraeme F Woodworth-
dc.contributor.googleauthorPallavi Tiwari-
dc.contributor.googleauthorPablo Valdes-
dc.contributor.googleauthorYuji Matsumoto-
dc.contributor.googleauthorYoshihiro Otani-
dc.contributor.googleauthorRyoji Imoto-
dc.contributor.googleauthorMariam Aboian-
dc.contributor.googleauthorShinichiro Koizumi-
dc.contributor.googleauthorKazuhiko Kurozumi-
dc.contributor.googleauthorToru Kawakatsu-
dc.contributor.googleauthorKimberley Alexander-
dc.contributor.googleauthorLaveniya Satgunaseelan-
dc.contributor.googleauthorAaron M Rulseh-
dc.contributor.googleauthorStephen J Bagley-
dc.contributor.googleauthorMichel Bilello-
dc.contributor.googleauthorZev A Binder-
dc.contributor.googleauthorSteven Brem-
dc.contributor.googleauthorArati S Desai-
dc.contributor.googleauthorRobert A Lustig-
dc.contributor.googleauthorEileen Maloney-
dc.contributor.googleauthorTimothy Prior-
dc.contributor.googleauthorNduka Amankulor-
dc.contributor.googleauthorMacLean P Nasrallah-
dc.contributor.googleauthorDonald M O'Rourke-
dc.contributor.googleauthorSuyash Mohan-
dc.contributor.googleauthorChristos Davatzikos-
dc.contributor.googleauthorReSPOND consortium-
dc.identifier.doi10.1093/neuonc/noae260-
dc.contributor.localIdA05330-
dc.relation.journalcodeJ02346-
dc.identifier.eissn1523-5866-
dc.identifier.pmid39665363-
dc.identifier.urlhttps://academic.oup.com/neuro-oncology/article-abstract/27/4/1102/7922273-
dc.subject.keywordglioblastoma-
dc.subject.keywordmachine learning-
dc.subject.keywordmpMRI-
dc.subject.keywordprognostic subgrouping-
dc.subject.keywordsurvival-
dc.contributor.alternativeNamePark, Yae-Won-
dc.contributor.affiliatedAuthor박예원-
dc.citation.volume27-
dc.citation.number4-
dc.citation.startPage1102-
dc.citation.endPage1115-
dc.identifier.bibliographicCitationNEURO-ONCOLOGY, Vol.27(4) : 1102-1115, 2025-05-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.