0 92

Cited 0 times in

Enhancing diagnostic accuracy of thyroid nodules: integrating self-learning and artificial intelligence in clinical training

DC Field Value Language
dc.contributor.author곽진영-
dc.contributor.author김다함-
dc.contributor.author김영숙-
dc.contributor.author노미리비-
dc.contributor.author박영진-
dc.contributor.author윤정현-
dc.contributor.author윤지영-
dc.contributor.author이시은-
dc.contributor.author이혜선-
dc.date.accessioned2025-08-18T05:42:29Z-
dc.date.available2025-08-18T05:42:29Z-
dc.date.issued2025-06-
dc.identifier.issn1355-008X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207161-
dc.description.abstractPurpose: This study explores a self-learning method as an auxiliary approach in residency training for distinguishing between benign and malignant thyroid nodules. Methods: Conducted from March to December 2022, internal medicine residents underwent three repeated learning sessions with a "learning set" comprising 3000 thyroid nodule images. Diagnostic performances for internal medicine residents were assessed before the study, after every learning session, and for radiology residents before and after one-on-one education, using a "test set," comprising 120 thyroid nodule images. Finally, all residents repeated the same test using artificial intelligence computer-assisted diagnosis (AI-CAD). Results: Twenty-one internal medicine and eight radiology residents participated. Initially, internal medicine residents had a lower area under the receiver operating characteristic curve (AUROC) than radiology residents (0.578 vs. 0.701, P < 0.001), improving post-learning (0.578 to 0.709, P < 0.001) to a comparable level with radiology residents (0.709 vs. 0.735, P = 0.17). Further improvement occurred with AI-CAD for both group (0.709 to 0.755, P < 0.001; 0.735 to 0.768, P = 0.03). Conclusion: The proposed iterative self-learning method using a large volume of ultrasonographic images can assist beginners, such as residents, in thyroid imaging to differentiate benign and malignant thyroid nodules. Additionally, AI-CAD can improve the diagnostic performance across varied levels of experience in thyroid imaging.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherHumana Press-
dc.relation.isPartOfENDOCRINE-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAdult-
dc.subject.MESHArtificial Intelligence*-
dc.subject.MESHClinical Competence-
dc.subject.MESHDiagnosis, Computer-Assisted-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHInternal Medicine* / education-
dc.subject.MESHInternship and Residency* / methods-
dc.subject.MESHMale-
dc.subject.MESHRadiology / education-
dc.subject.MESHThyroid Neoplasms / diagnostic imaging-
dc.subject.MESHThyroid Nodule* / diagnosis-
dc.subject.MESHThyroid Nodule* / diagnostic imaging-
dc.titleEnhancing diagnostic accuracy of thyroid nodules: integrating self-learning and artificial intelligence in clinical training-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiology (영상의학교실)-
dc.contributor.googleauthorDaham Kim-
dc.contributor.googleauthorYoon-A Hwang-
dc.contributor.googleauthorYoungsook Kim-
dc.contributor.googleauthorHye Sun Lee-
dc.contributor.googleauthorEunjung Lee-
dc.contributor.googleauthorHyunju Lee-
dc.contributor.googleauthorJung Hyun Yoon-
dc.contributor.googleauthorVivian Youngjean Park-
dc.contributor.googleauthorMiribi Rho-
dc.contributor.googleauthorJiyoung Yoon-
dc.contributor.googleauthorSi Eun Lee-
dc.contributor.googleauthorJin Young Kwak-
dc.identifier.doi10.1007/s12020-025-04196-w-
dc.contributor.localIdA00182-
dc.contributor.localIdA00363-
dc.contributor.localIdA00715-
dc.contributor.localIdA05327-
dc.contributor.localIdA01572-
dc.contributor.localIdA02595-
dc.contributor.localIdA05730-
dc.contributor.localIdA05611-
dc.contributor.localIdA03312-
dc.relation.journalcodeJ00768-
dc.identifier.eissn1559-0100-
dc.identifier.pmid39979566-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s12020-025-04196-w-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordComputer assisted diagnosis-
dc.subject.keywordDeep learning-
dc.subject.keywordThyroid nodule-
dc.subject.keywordUltrasonography-
dc.contributor.alternativeNameKwak, Jin Young-
dc.contributor.affiliatedAuthor곽진영-
dc.contributor.affiliatedAuthor김다함-
dc.contributor.affiliatedAuthor김영숙-
dc.contributor.affiliatedAuthor노미리비-
dc.contributor.affiliatedAuthor박영진-
dc.contributor.affiliatedAuthor윤정현-
dc.contributor.affiliatedAuthor윤지영-
dc.contributor.affiliatedAuthor이시은-
dc.contributor.affiliatedAuthor이혜선-
dc.citation.volume88-
dc.citation.number3-
dc.citation.startPage766-
dc.citation.endPage775-
dc.identifier.bibliographicCitationENDOCRINE, Vol.88(3) : 766-775, 2025-06-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Yonsei Biomedical Research Center (연세의생명연구원) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.