Cited 0 times in
Enhancing diagnostic accuracy of thyroid nodules: integrating self-learning and artificial intelligence in clinical training
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 곽진영 | - |
dc.contributor.author | 김다함 | - |
dc.contributor.author | 김영숙 | - |
dc.contributor.author | 노미리비 | - |
dc.contributor.author | 박영진 | - |
dc.contributor.author | 윤정현 | - |
dc.contributor.author | 윤지영 | - |
dc.contributor.author | 이시은 | - |
dc.contributor.author | 이혜선 | - |
dc.date.accessioned | 2025-08-18T05:42:29Z | - |
dc.date.available | 2025-08-18T05:42:29Z | - |
dc.date.issued | 2025-06 | - |
dc.identifier.issn | 1355-008X | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/207161 | - |
dc.description.abstract | Purpose: This study explores a self-learning method as an auxiliary approach in residency training for distinguishing between benign and malignant thyroid nodules. Methods: Conducted from March to December 2022, internal medicine residents underwent three repeated learning sessions with a "learning set" comprising 3000 thyroid nodule images. Diagnostic performances for internal medicine residents were assessed before the study, after every learning session, and for radiology residents before and after one-on-one education, using a "test set," comprising 120 thyroid nodule images. Finally, all residents repeated the same test using artificial intelligence computer-assisted diagnosis (AI-CAD). Results: Twenty-one internal medicine and eight radiology residents participated. Initially, internal medicine residents had a lower area under the receiver operating characteristic curve (AUROC) than radiology residents (0.578 vs. 0.701, P < 0.001), improving post-learning (0.578 to 0.709, P < 0.001) to a comparable level with radiology residents (0.709 vs. 0.735, P = 0.17). Further improvement occurred with AI-CAD for both group (0.709 to 0.755, P < 0.001; 0.735 to 0.768, P = 0.03). Conclusion: The proposed iterative self-learning method using a large volume of ultrasonographic images can assist beginners, such as residents, in thyroid imaging to differentiate benign and malignant thyroid nodules. Additionally, AI-CAD can improve the diagnostic performance across varied levels of experience in thyroid imaging. | - |
dc.description.statementOfResponsibility | restriction | - |
dc.language | English | - |
dc.publisher | Humana Press | - |
dc.relation.isPartOf | ENDOCRINE | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.subject.MESH | Adult | - |
dc.subject.MESH | Artificial Intelligence* | - |
dc.subject.MESH | Clinical Competence | - |
dc.subject.MESH | Diagnosis, Computer-Assisted | - |
dc.subject.MESH | Female | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Internal Medicine* / education | - |
dc.subject.MESH | Internship and Residency* / methods | - |
dc.subject.MESH | Male | - |
dc.subject.MESH | Radiology / education | - |
dc.subject.MESH | Thyroid Neoplasms / diagnostic imaging | - |
dc.subject.MESH | Thyroid Nodule* / diagnosis | - |
dc.subject.MESH | Thyroid Nodule* / diagnostic imaging | - |
dc.title | Enhancing diagnostic accuracy of thyroid nodules: integrating self-learning and artificial intelligence in clinical training | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Radiology (영상의학교실) | - |
dc.contributor.googleauthor | Daham Kim | - |
dc.contributor.googleauthor | Yoon-A Hwang | - |
dc.contributor.googleauthor | Youngsook Kim | - |
dc.contributor.googleauthor | Hye Sun Lee | - |
dc.contributor.googleauthor | Eunjung Lee | - |
dc.contributor.googleauthor | Hyunju Lee | - |
dc.contributor.googleauthor | Jung Hyun Yoon | - |
dc.contributor.googleauthor | Vivian Youngjean Park | - |
dc.contributor.googleauthor | Miribi Rho | - |
dc.contributor.googleauthor | Jiyoung Yoon | - |
dc.contributor.googleauthor | Si Eun Lee | - |
dc.contributor.googleauthor | Jin Young Kwak | - |
dc.identifier.doi | 10.1007/s12020-025-04196-w | - |
dc.contributor.localId | A00182 | - |
dc.contributor.localId | A00363 | - |
dc.contributor.localId | A00715 | - |
dc.contributor.localId | A05327 | - |
dc.contributor.localId | A01572 | - |
dc.contributor.localId | A02595 | - |
dc.contributor.localId | A05730 | - |
dc.contributor.localId | A05611 | - |
dc.contributor.localId | A03312 | - |
dc.relation.journalcode | J00768 | - |
dc.identifier.eissn | 1559-0100 | - |
dc.identifier.pmid | 39979566 | - |
dc.identifier.url | https://link.springer.com/article/10.1007/s12020-025-04196-w | - |
dc.subject.keyword | Artificial intelligence | - |
dc.subject.keyword | Computer assisted diagnosis | - |
dc.subject.keyword | Deep learning | - |
dc.subject.keyword | Thyroid nodule | - |
dc.subject.keyword | Ultrasonography | - |
dc.contributor.alternativeName | Kwak, Jin Young | - |
dc.contributor.affiliatedAuthor | 곽진영 | - |
dc.contributor.affiliatedAuthor | 김다함 | - |
dc.contributor.affiliatedAuthor | 김영숙 | - |
dc.contributor.affiliatedAuthor | 노미리비 | - |
dc.contributor.affiliatedAuthor | 박영진 | - |
dc.contributor.affiliatedAuthor | 윤정현 | - |
dc.contributor.affiliatedAuthor | 윤지영 | - |
dc.contributor.affiliatedAuthor | 이시은 | - |
dc.contributor.affiliatedAuthor | 이혜선 | - |
dc.citation.volume | 88 | - |
dc.citation.number | 3 | - |
dc.citation.startPage | 766 | - |
dc.citation.endPage | 775 | - |
dc.identifier.bibliographicCitation | ENDOCRINE, Vol.88(3) : 766-775, 2025-06 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.