9 123

Cited 0 times in

CAN-Scan: A multi-omic phenotype-driven precision oncology platform identifies prognostic biomarkers of therapy response for colorectal cancer

Authors
 Shumei Chia  ;  Justine Jia Wen Seow  ;  Rafael Peres da Silva  ;  Chayaporn Suphavilai  ;  Niranjan Shirgaonkar  ;  Maki Murata-Hori  ;  Xiaoqian Zhang  ;  Elena Yaqing Yong  ;  Jiajia Pan  ;  Matan Thangavelu Thangavelu  ;  Giridharan Periyasamy  ;  Aixin Yap  ;  Padmaja Anand  ;  Daniel Muliaditan  ;  Yun Shen Chan  ;  Wang Siyu  ;  Chua Wei Yong  ;  Nguyen Hong  ;  Gao Ran  ;  Ngak Leng Sim  ;  Yu Amanda Guo  ;  Andrea Xin Yi Teh  ;  Clarinda Chua Wei Ling  ;  Emile Kwong Wei Tan  ;  Fu Wan Pei Cherylin  ;  Meihuan Chang  ;  Shuting Han  ;  Isaac Seow-En  ;  Lionel Raphael Chen Hui  ;  Anna Hwee Hsia Gan  ;  Choon Kong Yap  ;  Huck Hui Ng  ;  Anders Jacobsen Skanderup  ;  Vitoon Chinswangwatanakul  ;  Woramin Riansuwan  ;  Atthaphorn Trakarnsanga  ;  Manop Pithukpakorn  ;  Pariyada Tanjak  ;  Amphun Chaiboonchoe  ;  Daye Park  ;  Dong Keon Kim  ;  Narayanan Gopalakrishna Iyer  ;  Petros Tsantoulis  ;  Sabine Tejpar  ;  Jung Eun Kim  ;  Tae Il Kim  ;  Somponnat Sampattavanich  ;  Iain Beehuat Tan  ;  Niranjan Nagarajan  ;  Ramanuj DasGupta 
Citation
 CELL REPORTS MEDICINE, Vol.6(4) : 102053, 2025-04 
Journal Title
CELL REPORTS MEDICINE
Issue Date
2025-04
MeSH
Biomarkers, Tumor* / genetics ; Biomarkers, Tumor* / metabolism ; Cell Line, Tumor ; Colorectal Neoplasms* / drug therapy ; Colorectal Neoplasms* / genetics ; Colorectal Neoplasms* / pathology ; Drug Resistance, Neoplasm / genetics ; Fluorouracil / pharmacology ; Fluorouracil / therapeutic use ; Humans ; Machine Learning ; Multiomics ; Phenotype ; Precision Medicine* / methods ; Prognosis ; Treatment Outcome
Keywords
5-FU resistance ; PDC ; biomarker ; chromosome 7 amplification ; colorectal cancer ; drug screen ; head and neck cancer ; machine learning ; patient-derived cancer models ; pharmacogenomics ; precision oncology
Abstract
Application of machine learning (ML) on cancer-specific pharmacogenomic datasets shows immense promise for identifying predictive response biomarkers to enable personalized treatment. We introduce CAN-Scan, a precision oncology platform, which applies ML on next-generation pharmacogenomic datasets generated from a freeze-viable biobank of patient-derived primary cell lines (PDCs). These PDCs are screened against 84 Food and Drug Administration (FDA)-approved drugs at clinically relevant doses (Cmax), focusing on colorectal cancer (CRC) as a model system. CAN-Scan uncovers prognostic biomarkers and alternative treatment strategies, particularly for patients unresponsive to first-line chemotherapy. Specifically, it identifies gene expression signatures linked to resistance against 5-fluorouracil (5-FU)-based drugs and a focal copy-number gain on chromosome 7q, harboring critical resistance-associated genes. CAN-Scan-derived response signatures accurately predict clinical outcomes across four independent, ethnically diverse CRC cohorts. Notably, drug-specific ML models reveal regorafenib and vemurafenib as alternative treatments for BRAF-expressing, 5-FU-insensitive CRC. Altogether, this approach demonstrates significant potential in improving biomarker discovery and guiding personalized treatments.
Files in This Item:
T202504850.pdf Download
DOI
10.1016/j.xcrm.2025.102053
Appears in Collections:
1. College of Medicine (의과대학) > Research Institute (부설연구소) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
Yonsei Authors
Kim, Dong Keon(김동건)
Kim, Tae Il(김태일) ORCID logo https://orcid.org/0000-0003-4807-890X
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/206713
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links