Cited 0 times in
CAN-Scan: A multi-omic phenotype-driven precision oncology platform identifies prognostic biomarkers of therapy response for colorectal cancer
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 김동건 | - |
dc.contributor.author | 김태일 | - |
dc.date.accessioned | 2025-07-17T03:25:09Z | - |
dc.date.available | 2025-07-17T03:25:09Z | - |
dc.date.issued | 2025-04 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/206713 | - |
dc.description.abstract | Application of machine learning (ML) on cancer-specific pharmacogenomic datasets shows immense promise for identifying predictive response biomarkers to enable personalized treatment. We introduce CAN-Scan, a precision oncology platform, which applies ML on next-generation pharmacogenomic datasets generated from a freeze-viable biobank of patient-derived primary cell lines (PDCs). These PDCs are screened against 84 Food and Drug Administration (FDA)-approved drugs at clinically relevant doses (Cmax), focusing on colorectal cancer (CRC) as a model system. CAN-Scan uncovers prognostic biomarkers and alternative treatment strategies, particularly for patients unresponsive to first-line chemotherapy. Specifically, it identifies gene expression signatures linked to resistance against 5-fluorouracil (5-FU)-based drugs and a focal copy-number gain on chromosome 7q, harboring critical resistance-associated genes. CAN-Scan-derived response signatures accurately predict clinical outcomes across four independent, ethnically diverse CRC cohorts. Notably, drug-specific ML models reveal regorafenib and vemurafenib as alternative treatments for BRAF-expressing, 5-FU-insensitive CRC. Altogether, this approach demonstrates significant potential in improving biomarker discovery and guiding personalized treatments. | - |
dc.description.statementOfResponsibility | open | - |
dc.language | English | - |
dc.publisher | Cell Press | - |
dc.relation.isPartOf | CELL REPORTS MEDICINE | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.subject.MESH | Biomarkers, Tumor* / genetics | - |
dc.subject.MESH | Biomarkers, Tumor* / metabolism | - |
dc.subject.MESH | Cell Line, Tumor | - |
dc.subject.MESH | Colorectal Neoplasms* / drug therapy | - |
dc.subject.MESH | Colorectal Neoplasms* / genetics | - |
dc.subject.MESH | Colorectal Neoplasms* / pathology | - |
dc.subject.MESH | Drug Resistance, Neoplasm / genetics | - |
dc.subject.MESH | Fluorouracil / pharmacology | - |
dc.subject.MESH | Fluorouracil / therapeutic use | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Machine Learning | - |
dc.subject.MESH | Multiomics | - |
dc.subject.MESH | Phenotype | - |
dc.subject.MESH | Precision Medicine* / methods | - |
dc.subject.MESH | Prognosis | - |
dc.subject.MESH | Treatment Outcome | - |
dc.title | CAN-Scan: A multi-omic phenotype-driven precision oncology platform identifies prognostic biomarkers of therapy response for colorectal cancer | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Research Institute (부설연구소) | - |
dc.contributor.googleauthor | Shumei Chia | - |
dc.contributor.googleauthor | Justine Jia Wen Seow | - |
dc.contributor.googleauthor | Rafael Peres da Silva | - |
dc.contributor.googleauthor | Chayaporn Suphavilai | - |
dc.contributor.googleauthor | Niranjan Shirgaonkar | - |
dc.contributor.googleauthor | Maki Murata-Hori | - |
dc.contributor.googleauthor | Xiaoqian Zhang | - |
dc.contributor.googleauthor | Elena Yaqing Yong | - |
dc.contributor.googleauthor | Jiajia Pan | - |
dc.contributor.googleauthor | Matan Thangavelu Thangavelu | - |
dc.contributor.googleauthor | Giridharan Periyasamy | - |
dc.contributor.googleauthor | Aixin Yap | - |
dc.contributor.googleauthor | Padmaja Anand | - |
dc.contributor.googleauthor | Daniel Muliaditan | - |
dc.contributor.googleauthor | Yun Shen Chan | - |
dc.contributor.googleauthor | Wang Siyu | - |
dc.contributor.googleauthor | Chua Wei Yong | - |
dc.contributor.googleauthor | Nguyen Hong | - |
dc.contributor.googleauthor | Gao Ran | - |
dc.contributor.googleauthor | Ngak Leng Sim | - |
dc.contributor.googleauthor | Yu Amanda Guo | - |
dc.contributor.googleauthor | Andrea Xin Yi Teh | - |
dc.contributor.googleauthor | Clarinda Chua Wei Ling | - |
dc.contributor.googleauthor | Emile Kwong Wei Tan | - |
dc.contributor.googleauthor | Fu Wan Pei Cherylin | - |
dc.contributor.googleauthor | Meihuan Chang | - |
dc.contributor.googleauthor | Shuting Han | - |
dc.contributor.googleauthor | Isaac Seow-En | - |
dc.contributor.googleauthor | Lionel Raphael Chen Hui | - |
dc.contributor.googleauthor | Anna Hwee Hsia Gan | - |
dc.contributor.googleauthor | Choon Kong Yap | - |
dc.contributor.googleauthor | Huck Hui Ng | - |
dc.contributor.googleauthor | Anders Jacobsen Skanderup | - |
dc.contributor.googleauthor | Vitoon Chinswangwatanakul | - |
dc.contributor.googleauthor | Woramin Riansuwan | - |
dc.contributor.googleauthor | Atthaphorn Trakarnsanga | - |
dc.contributor.googleauthor | Manop Pithukpakorn | - |
dc.contributor.googleauthor | Pariyada Tanjak | - |
dc.contributor.googleauthor | Amphun Chaiboonchoe | - |
dc.contributor.googleauthor | Daye Park | - |
dc.contributor.googleauthor | Dong Keon Kim | - |
dc.contributor.googleauthor | Narayanan Gopalakrishna Iyer | - |
dc.contributor.googleauthor | Petros Tsantoulis | - |
dc.contributor.googleauthor | Sabine Tejpar | - |
dc.contributor.googleauthor | Jung Eun Kim | - |
dc.contributor.googleauthor | Tae Il Kim | - |
dc.contributor.googleauthor | Somponnat Sampattavanich | - |
dc.contributor.googleauthor | Iain Beehuat Tan | - |
dc.contributor.googleauthor | Niranjan Nagarajan | - |
dc.contributor.googleauthor | Ramanuj DasGupta | - |
dc.identifier.doi | 10.1016/j.xcrm.2025.102053 | - |
dc.contributor.localId | A06486 | - |
dc.contributor.localId | A01079 | - |
dc.relation.journalcode | J04379 | - |
dc.identifier.eissn | 2666-3791 | - |
dc.identifier.pmid | 40187357 | - |
dc.subject.keyword | 5-FU resistance | - |
dc.subject.keyword | PDC | - |
dc.subject.keyword | biomarker | - |
dc.subject.keyword | chromosome 7 amplification | - |
dc.subject.keyword | colorectal cancer | - |
dc.subject.keyword | drug screen | - |
dc.subject.keyword | head and neck cancer | - |
dc.subject.keyword | machine learning | - |
dc.subject.keyword | patient-derived cancer models | - |
dc.subject.keyword | pharmacogenomics | - |
dc.subject.keyword | precision oncology | - |
dc.contributor.alternativeName | Kim, Dong Keon | - |
dc.contributor.affiliatedAuthor | 김동건 | - |
dc.contributor.affiliatedAuthor | 김태일 | - |
dc.citation.volume | 6 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 102053 | - |
dc.identifier.bibliographicCitation | CELL REPORTS MEDICINE, Vol.6(4) : 102053, 2025-04 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.