Cited 2 times in

Biocompatibility and mineralization potential of new calcium silicate cements

DC Field Value Language
dc.contributor.author강정민-
dc.contributor.author송제선-
dc.contributor.author신유석-
dc.contributor.author최형준-
dc.contributor.author김익환-
dc.date.accessioned2023-07-12T03:05:53Z-
dc.date.available2023-07-12T03:05:53Z-
dc.date.issued2023-07-
dc.identifier.issn1991-7902-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/195497-
dc.description.abstractBackground/purpose: As calcium silicate cements (CSCs) have been successfully used in various types of vital pulp therapy, many new CSC products have been developed. The aim of this study was to evaluate the biocompatibilities and mineralization potential of new CSC. The experimental materials were NeoMTA Plus and EndoSequence Root Repair Material-Fast Set Putty (ERRM-FS) which were compared to ProRoot MTA. Materials and methods: In vitro, the effects of the new CSC on stem cells were evaluated. Each CSC was prepared for cell viability testing, alkaline phosphatase (ALP) assay, and calcium ion release assay. In vivo, the exposed pulp model was used for the partial pulpotomy procedure. Thirty-six teeth were treated with three materials: ProRoot MTA, NeoMTA Plus, or ERRM-FS. After four weeks, the teeth were extracted and processed for histologic analysis. Dentin bridge formation, pulp inflammation, and odontoblastic cell layer were evaluated and the area of newly formed calcific barrier of each group was measured. Results: Three CSCs demonstrated similar cell viability on stem cells and the levels of ALP and calcium release were not significantly different between tested materials. ProRoot MTA and ERRM-FS showed better tissue healing process than NeoMTA Plus after partial pulpotomy, in terms of quality of calcific barrier and pulp inflammation. The outcomes from measuring newly formed calcific area demonstrated no significant differences between the materials. Conclusion: NeoMTA Plus and ERRM-FS displayed similar biocompatibilities and mineralization potential compared to ProRoot MTA. Therefore, these new CSCs can be used as desirable alternatives to ProRoot MTA.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherAssociation for Dental Sciences of the Republic of China-
dc.relation.isPartOfJOURNAL OF DENTAL SCIENCES-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleBiocompatibility and mineralization potential of new calcium silicate cements-
dc.typeArticle-
dc.contributor.collegeCollege of Dentistry (치과대학)-
dc.contributor.departmentDept. of Pediatric Dentistry (소아치과학교실)-
dc.contributor.googleauthorByurira Kim-
dc.contributor.googleauthorYong-Hyuk Lee-
dc.contributor.googleauthorIk-Hwan Kim-
dc.contributor.googleauthorKo Eun Lee-
dc.contributor.googleauthorChung-Min Kang-
dc.contributor.googleauthorHyo-Seol Lee-
dc.contributor.googleauthorHyung-Jun Choi-
dc.contributor.googleauthorKyounga Cheon-
dc.contributor.googleauthorJe Seon Song-
dc.contributor.googleauthorYooseok Shin-
dc.identifier.doi10.1016/j.jds.2022.10.004-
dc.contributor.localIdA05078-
dc.contributor.localIdA02058-
dc.contributor.localIdA02129-
dc.contributor.localIdA04216-
dc.relation.journalcodeJ04116-
dc.identifier.eissn2213-8862-
dc.identifier.pmid37404639-
dc.subject.keywordBiocompatibility-
dc.subject.keywordCalcium silicate cement-
dc.subject.keywordMineralization potential-
dc.subject.keywordPartial pulpotomy-
dc.contributor.alternativeNameKang, Chung Min-
dc.contributor.affiliatedAuthor강정민-
dc.contributor.affiliatedAuthor송제선-
dc.contributor.affiliatedAuthor신유석-
dc.contributor.affiliatedAuthor최형준-
dc.citation.volume18-
dc.citation.number3-
dc.citation.startPage1189-
dc.citation.endPage1198-
dc.identifier.bibliographicCitationJOURNAL OF DENTAL SCIENCES, Vol.18(3) : 1189-1198, 2023-07-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Conservative Dentistry (보존과학교실) > 1. Journal Papers
2. College of Dentistry (치과대학) > Dept. of Pediatric Dentistry (소아치과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.