312 273

Cited 3 times in

Metal artifact reduction in kV CT images throughout two-step sequential deep convolutional neural networks by combining multi-modal imaging (MARTIAN)

Authors
 Hojin Kim  ;  Sang Kyun Yoo  ;  Dong Wook Kim  ;  Ho Lee  ;  Chae-Seon Hong  ;  Min Cheol Han  ;  Jin Sung Kim 
Citation
 SCIENTIFIC REPORTS, Vol.12(1) : 20823, 2022-12 
Journal Title
SCIENTIFIC REPORTS
Issue Date
2022-12
MeSH
Extraterrestrial Environment* ; Mars* ; Multimodal Imaging ; Neural Networks, Computer ; Tomography, X-Ray Computed
Abstract
This work attempted to construct a new metal artifact reduction (MAR) framework in kilo-voltage (kV) computed tomography (CT) images by combining (1) deep learning and (2) multi-modal imaging, defined as MARTIAN (Metal Artifact Reduction throughout Two-step sequentIAl deep convolutional neural Networks). Most CNNs under supervised learning require artifact-free images to artifact-contaminated images for artifact correction. Mega-voltage (MV) CT is insensitive to metal artifacts, unlike kV CT due to different physical characteristics, which can facilitate the generation of artifact-free synthetic kV CT images throughout the first network (Network 1). The pairs of true kV CT and artifact-free kV CT images after post-processing constructed a subsequent network (Network 2) to conduct the actual MAR process. The proposed framework was implemented by GAN from 90 scans for head-and-neck and brain radiotherapy and validated with 10 independent cases against commercial MAR software. The artifact-free kV CT images following Network 1 and post-processing led to structural similarity (SSIM) of 0.997, and mean-absolute-error (MAE) of 10.2 HU, relative to true kV CT. Network 2 in charge of actual MAR successfully suppressed metal artifacts, relative to commercial MAR, while retaining the detailed imaging information, yielding the SSIM of 0.995 against 0.997 from the commercial MAR.
Files in This Item:
T202300632.pdf Download
DOI
10.1038/s41598-022-25366-0
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers
Yonsei Authors
Kim, Dong Wook(김동욱) ORCID logo https://orcid.org/0000-0002-5819-9783
Kim, Jinsung(김진성) ORCID logo https://orcid.org/0000-0003-1415-6471
Kim, Hojin(김호진) ORCID logo https://orcid.org/0000-0002-4652-8682
Lee, Ho(이호) ORCID logo https://orcid.org/0000-0001-5773-6893
Han, Min Cheol(한민철)
Hong, Chae-Seon(홍채선) ORCID logo https://orcid.org/0000-0001-9120-6132
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/193121
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links