0 536

Cited 104 times in

Prediction of the sequence-specific cleavage activity of Cas9 variants

DC Field Value Language
dc.contributor.author김형범-
dc.contributor.author김희권-
dc.contributor.author조성래-
dc.date.accessioned2020-12-01T17:59:41Z-
dc.date.available2020-12-01T17:59:41Z-
dc.date.issued2020-11-
dc.identifier.issn1087-0156-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/180544-
dc.description.abstractSeveral Streptococcus pyogenes Cas9 (SpCas9) variants have been developed to improve an enzyme's specificity or to alter or broaden its protospacer-adjacent motif (PAM) compatibility, but selecting the optimal variant for a given target sequence and application remains difficult. To build computational models to predict the sequence-specific activity of 13 SpCas9 variants, we first assessed their cleavage efficiency at 26,891 target sequences. We found that, of the 256 possible four-nucleotide NNNN sequences, 156 can be used as a PAM by at least one of the SpCas9 variants. For the high-fidelity variants, overall activity could be ranked as SpCas9 ≥ Sniper-Cas9 > eSpCas9(1.1) > SpCas9-HF1 > HypaCas9 ≈ xCas9 >> evoCas9, whereas their overall specificities could be ranked as evoCas9 >> HypaCas9 ≥ SpCas9-HF1 ≈ eSpCas9(1.1) > xCas9 > Sniper-Cas9 > SpCas9. Using these data, we developed 16 deep-learning-based computational models that accurately predict the activity of these variants at any target sequence.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherNature America Publishing-
dc.relation.isPartOfNATURE BIOTECHNOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titlePrediction of the sequence-specific cleavage activity of Cas9 variants-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Pharmacology (약리학교실)-
dc.contributor.googleauthorNahye Kim-
dc.contributor.googleauthorHui Kwon Kim-
dc.contributor.googleauthorSungtae Lee-
dc.contributor.googleauthorJung Hwa Seo-
dc.contributor.googleauthorJae Woo Choi-
dc.contributor.googleauthorJinman Park-
dc.contributor.googleauthorSeonwoo Min-
dc.contributor.googleauthorSungroh Yoon-
dc.contributor.googleauthorSung-Rae Cho-
dc.contributor.googleauthorHyongbum Henry Kim-
dc.identifier.doi10.1038/s41587-020-0537-9-
dc.contributor.localIdA01148-
dc.contributor.localIdA05972-
dc.contributor.localIdA03831-
dc.relation.journalcodeJ02290-
dc.identifier.eissn1546-1696-
dc.identifier.pmid32514125-
dc.identifier.urlhttps://www.nature.com/articles/s41587-020-0537-9-
dc.contributor.alternativeNameKim, Hyongbum-
dc.contributor.affiliatedAuthor김형범-
dc.contributor.affiliatedAuthor김희권-
dc.contributor.affiliatedAuthor조성래-
dc.citation.volume38-
dc.citation.number11-
dc.citation.startPage1328-
dc.citation.endPage1336-
dc.identifier.bibliographicCitationNATURE BIOTECHNOLOGY, Vol.38(11) : 1328-1336, 2020-11-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pharmacology (약리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Rehabilitation Medicine (재활의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Others (기타) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.