0 85

Cited 15 times in

Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging

Authors
 Yae Won Park  ;  Jongmin Oh  ;  Seng Chan You  ;  Kyunghwa Han  ;  Sung Soo Ahn  ;  Yoon Seong Choi  ;  Jong Hee Chang  ;  Se Hoon Kim  ;  Seung-Koo Lee 
Citation
 European Radiology, Vol.29(8) : 4068-4076, 2019 
Journal Title
 European Radiology 
ISSN
 0938-7994 
Issue Date
2019
Keywords
Diffusion tensor imaging ; Magnetic resonance imaging ; Meningioma ; Radiomics
Abstract
OBJECTIVES: Preoperative, noninvasive prediction of the meningioma grade is important because it influences the treatment strategy. The purpose of this study was to evaluate the role of radiomics features of postcontrast T1-weighted images (T1C), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps, based on the entire tumor volume, in the differentiation of grades and histological subtypes of meningiomas. METHODS: One hundred thirty-six patients with pathologically diagnosed meningiomas (108 low-grade [benign], 28 high-grade [atypical and anaplastic]), who underwent T1C and diffusion tensor imaging, were included in the discovery set. The T1C image, ADC, and FA maps were analyzed to derive volume-based data of the entire tumor. Radiomics features were correlated with meningioma grades and histological subtypes. Various machine learning classifiers were trained to build classification models to predict meningioma grades. We tested the model in a validation set (58 patients; 46 low-grade; 12 high-grade). RESULTS: The machine learning classifiers showed variable performances depending on the machine learning algorithms. The best classification system for the prediction of meningioma grades had an area under the curve of 0.86 (95% confidence interval [CI], 0.74-0.98) in the validation set. The accuracy, sensitivity, and specificity of the best classifier were 89.7, 75.0, and 93.5% in the validation set, respectively. Various texture parameters differed significantly between fibroblastic and non-fibroblastic subtypes. CONCLUSIONS: Radiomics feature-based machine learning classifiers of T1C images, ADC, and FA maps are useful for differentiating meningioma grades. KEY POINTS: • Preoperative, noninvasive differentiation of the meningioma grade is important because it influences the treatment strategy. • Radiomics feature-based machine learning classifiers of T1C images, ADC, and FA maps are useful for differentiating meningioma grades. • In benign meningiomas, there were significant differences in the various texture parameters between fibroblastic and non-fibroblastic meningioma subtypes.
Full Text
https://link.springer.com/article/10.1007%2Fs00330-018-5830-3
DOI
10.1007/s00330-018-5830-3
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers
Yonsei Authors
Kim, Se Hoon(김세훈) ORCID logo https://orcid.org/0000-0001-7516-7372
Park, Yae Won(박예원)
Ahn, Sung Soo(안성수) ORCID logo https://orcid.org/0000-0002-0503-5558
Lee, Seung Koo(이승구) ORCID logo https://orcid.org/0000-0001-5646-4072
Chang, Jong Hee(장종희)
Choi, Yoon Seong(최윤성)
Han, Kyung Hwa(한경화)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/171326
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse