0 49

Cited 12 times in

Initial study on in vivo conductivity mapping of breast cancer using MRI.

 Jaewook Shin ; Min Jung Kim ; Dong Hyun Kim ; Sooyeon Kim ; Narae Choi ; Minoh Kim ; Yoonho Nam ; Joonsung Lee 
 Journal of Magnetic Resonance Imaging, Vol.42(2) : 371~378, 2015 
Journal Title
 Journal of Magnetic Resonance Imaging 
Issue Date
PURPOSE: To develop and apply a method to measure in vivo electrical conductivity values using magnetic resonance imaging (MRI) in subjects with breast cancer. MATERIALS AND METHODS: A recently developed technique named MREPT (MR electrical properties tomography) together with a novel coil combination process was used to quantify the conductivity values. The overall technique was validated using a phantom study. In addition, 90 subjects were imaged (50 subjects with previously biopsy-confirmed breast tumor and 40 normal subjects), which was approved by our institutional review board (IRB). A routine clinical protocol, specifically a T2 -weighted FSE (fast spin echo) imaging data, was used for reconstruction of conductivity. RESULTS: By employing the coil combination, the relative error in the conductivity map was reduced from ~70% to 10%. The average conductivity values in breast cancers regions (0.89 ± 0.33S/m) was higher compared to parenchymal tissue (0.43 S/m, P < 0.0001) and fat (0.07 S/m, P < 0.00005) regions. Malignant cases (0.89 S/m, n = 30) showed increased conductivity compared to benign cases (0.56 S/m, n = 5) (P < 0.05). In addition, invasive cancers (0.96 S/m) showed higher mean conductivity compared to in situ cancers (0.57 S/m) (P < 0.0005). CONCLUSION: This study shows that conductivity mapping of breast cancers is feasible using a noninvasive in vivo MREPT technique combined with a coil combination process. The method may provide a tool in the MR diagnosis of breast cancer.
Appears in Collections:
1. 연구논문 > 1. College of Medicine > Dept. of Radiology
1. 연구논문 > 1. College of Medicine > Dept. of Life Science
Yonsei Authors
사서에게 알리기
RIS (EndNote)
XLS (Excel)


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.