Cervical dysplasia induces morphologic changes in the cervical epithelium which involve changes in the nuclear/cytoplasmic (N/C) ratio. Since the nucleus is one of the significant scattering sources, the N/C ratio change reflects the degree of circular polarization (DOCP) with the depth of signals. Therefore, we used the polarization-sensitive OCT (PS-OCT) technique to measure the polarization changes caused by scattering. Cervical tissues were obtained from a high-grade squamous intraepithelial lesion (H-SIL) of one woman and from low normal women. We obtained the mean of the DOCP as a function of depth in the cervix and quantified the change ratio of the DOCP using slopes that were determined by linear fits in the epithelium layer. We found that DOCP of H-SIL decayed faster than that of normal tissue because of the higher scattering in H-SIL as expected. This result indicates that the PS-OCT system might be useful in measurements of change ratio of DOCP with depth for screening of cervical dysplasia.