BACKGROUND AIMS: Adipose-derived stem cells (ASC) are known to be able to restore injured tissue via differentiation and paracrine effects. In this study, we investigated the effect of ASC on photo-aged human dermal fibroblasts (HDF) based on paracrine function. In particular, we wanted to determine a more effective method of ASC application and the fate of the photo-aged fibroblasts.
METHODS: We compared two application methods of ASC: transwell and conditioned medium culture with photo-aged fibroblasts. Proliferation rate, collagen synthesis, matrix metalloproteinase (MMP) production and expression of p16 were measured by real-time polymerase chain reaction (PCR) after culture. Flow cytometry for apoptosis assay was also conducted to determine the fate of the photo-aged fibroblasts.
RESULTS: ASC induced proliferation of photo-aged HDF and type I collagen production and decreased MMP-1 production and expression of p16. In an apoptosis assay, ASC converted necrotic or late apoptotic cells to early apoptotic cells. These results were similar in both experimental groups.
CONCLUSIONS: The results indicate that the paracrine effects of ASC may have a role that is as important as cell-to-cell communication between ASC and fibroblasts. We believe that conditioned medium may be a useful material for anti-aging skin therapy instead of cell therapy. Also, ASC might have an anti-aging effect on photo-aged fibroblasts even at a genetic level.