3 157

Cited 7 times in

Random and site-specific mutagenesis of the Helicobacter pylori ferric uptake regulator provides insight into Fur structure–function relationships

Authors
 Jeremy J. Gilbreath  ;  Oscar Q. Pich  ;  Stéphane L. Benoit  ;  Angelique N. Besold  ;  Jeong-Heon Cha  ;  Robert J. Maier  ;  Sarah L. J. Michel  ;  Ernest L. Maynard  ;  D. Scott Merrell 
Citation
 MOLECULAR MICROBIOLOGY, Vol.89(2) : 304-323, 2013 
Journal Title
 MOLECULAR MICROBIOLOGY 
ISSN
 0950-382X 
Issue Date
2013
MeSH
Amino Acid Sequence ; Bacterial Proteins/chemistry* ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism* ; Fluorescence Polarization ; Gastric Mucosa/metabolism ; Gastric Mucosa/microbiology ; Gene Expression Regulation, Bacterial* ; Helicobacter pylori/genetics ; Helicobacter pylori/metabolism* ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed/methods* ; Mutation ; Repressor Proteins/chemistry* ; Repressor Proteins/genetics ; Repressor Proteins/metabolism* ; Structure-Activity Relationship
Keywords
Amino Acid Sequence ; Bacterial Proteins/chemistry* ; Bacterial Proteins/genetics ; Bacterial Proteins/metabolism* ; Fluorescence Polarization ; Gastric Mucosa/metabolism ; Gastric Mucosa/microbiology ; Gene Expression Regulation, Bacterial* ; Helicobacter pylori/genetics ; Helicobacter pylori/metabolism* ; Humans ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed/methods* ; Mutation ; Repressor Proteins/chemistry* ; Repressor Proteins/genetics ; Repressor Proteins/metabolism* ; Structure-Activity Relationship
Abstract
The ferric uptake regulator (Fur) of Helicobacter pylori is a global regulator that is important for colonization and survival within the gastric mucosa. H. pylori Fur is unique in its ability to activate and repress gene expression in both the iron-bound (Fe-Fur) and apo forms (apo-Fur). In the current study we combined random and site-specific mutagenesis to identify amino acid residues important for both Fe-Fur and apo-Fur function. We identified 25 mutations that affected Fe-Fur repression and 23 mutations that affected apo-Fur repression, as determined by transcriptional analyses of the Fe-Fur target gene amiE, and the apo-Fur target gene, pfr. In addition, eight of these mutations also significantly affected levels of Fur in the cell. Based on regulatory phenotypes, we selected several representative mutations to characterize further. Of those selected, we purified the wild-type (HpFurWT) and three mutant Fur proteins (HpFurE5A, HpFurA92T and HpFurH134Y), which represent mutations in the N-terminal extension, the regulatory metal binding site (S2) and the structural metal binding site (S3) respectively. Purified proteins were evaluated for secondary structure by circular dichroism spectroscopy, iron-binding by atomic absorption spectrophotometry, oligomerization in manganese-substituted and apo conditions by in vitro cross-linking assays, and DNA binding to Fe-Fur and apo-Fur target sequences by fluorescence anisotropy. The results showed that the N-terminal, S2 and S3 regions play distinct roles in terms of Fur structure-function relationships. Overall, these studies provide novel information regarding the role of these residues in Fur function, and provide mechanistic insight into how H. pylori Fur regulates gene expression in both the iron-bound and apo forms of the protein.
Full Text
http://onlinelibrary.wiley.com/doi/10.1111/mmi.12278/abstract
DOI
10.1111/mmi.12278
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Oral Biology (구강생물학교실) > 1. Journal Papers
Yonsei Authors
Cha, Jung Heon(차정헌) ORCID logo https://orcid.org/0000-0002-9385-2653
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/88793
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse