0 14

Cited 0 times in

Cited 0 times in

Mono-Modalizing Extremely Heterogeneous Multi-modal Medical Image Registration

Authors
 Chool, Kyobin  ;  Han, Hyunkyung  ;  Kim, Jinyeong  ;  Yoon, Chanyong  ;  Hwang, Seong Jae 
Citation
 MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2025, PT V, Vol.15964 : 433-443, 2026-01 
Journal Title
Lecture Notes in Computer Science
ISSN
 0302-9743 
Issue Date
2026-01
Keywords
Unsupervised Deformable Medical Image Registration ; Multi-Modality ; Heterogeneity ; Semi-Supervised Learning
Abstract
In clinical practice, imaging modalities with functional characteristics, such as positron emission tomography (PET) and fractional anisotropy (FA), are often aligned with a structural reference (e.g., MRI, CT) for accurate interpretation or group analysis, necessitating multimodal deformable image registration (DIR). However, due to the extreme heterogeneity of these modalities compared to standard structural scans, conventional unsupervised DIR methods struggle to learn reliable spatial mappings and often distort images. We find that the similarity metrics guiding these models fail to capture alignment between highly disparate modalities. To address this, we propose M2M-Reg (Multi-to-Mono Registration), a novel framework that trains multi-modal DIR models using only mono-modal similarity while preserving the established architectural paradigm for seamless integration into existing models. We also introduce GradCyCon, a regularizer that leverages M2M-Reg's cyclic training scheme to promote diffeomorphism. Furthermore, our framework naturally extends to a semi-supervised setting, integrating pre-aligned and unaligned pairs only, without requiring ground-truth transformations or segmentation masks. Experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that M2M-Reg achieves up to 2x higher DSC than prior methods for PET-MRI and FAMRI registration, highlighting its effectiveness in handling highly heterogeneous multi-modal DIR. Our code is available at https://github.com/ MICV- yonsei/M2M-Reg.
Full Text
https://link.springer.com/chapter/10.1007/978-3-032-04971-1_41
DOI
10.1007/978-3-032-04971-1_41
Appears in Collections:
1. College of Medicine (의과대학) > Others (기타) > 1. Journal Papers
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/210378
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links