0 0

Cited 0 times in

Cited 0 times in

Predicting molecular types of adult-type diffuse gliomas based on MRI reports with large language models

DC Field Value Language
dc.contributor.authorSuh, Pae Sun-
dc.contributor.authorLee, Dahyoun-
dc.contributor.authorBang, Chang-Bae-
dc.contributor.authorHan, Kyunghwa-
dc.contributor.authorChoi, Kyu Sung-
dc.contributor.authorKim, Minjae-
dc.contributor.authorPark, Ji Eun-
dc.contributor.authorShin, Na-Young-
dc.contributor.authorAhn, Sung Soo-
dc.contributor.authorChoi, Seung Hong-
dc.contributor.authorKim, Ho Sung-
dc.contributor.authorLee, Seung-Koo-
dc.contributor.authorChang, Jong Hee-
dc.contributor.authorKim, Se Hoon-
dc.contributor.authorFoltyn-Dumitru, Martha-
dc.contributor.authorYou, Seng Chan-
dc.contributor.authorVollmuth, Philipp-
dc.contributor.authorKim, Byung-Hoon-
dc.contributor.authorPark, Yae Won-
dc.date.accessioned2026-01-22T02:30:59Z-
dc.date.available2026-01-22T02:30:59Z-
dc.date.created2026-01-16-
dc.date.issued2025-12-
dc.identifier.issn0938-7994-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210151-
dc.description.abstractObjectives To evaluate the performance of large language models (LLMs) in predicting molecular types of adult-type diffuse gliomas according to the 2021 WHO classification using MRI radiology reports. Materials and methods This retrospective study included 2169 patients diagnosed with adult-type diffuse gliomas (294 oligodendrogliomas, 295 IDH-mutant astrocytomas, and 1580 IDH-wildtype glioblastomas) between July 2005 and March 2024 from four hospitals in Asia and Europe. Seven proprietary and open-source LLMs were assessed: GPT-4o-mini, GPT-4.1-mini, Llama 3.1 8B, Llama 3.1 70B, Qwen2.5 7B, Deepseek-r1 8B, and Mistal 7B. The performance of LLMs in classifying molecular types was compared based on the provision of relevant knowledge of glioma imaging findings (knowledge-based vs. na & iuml;ve prompt). The impact of radiologists&apos; subspecialization in neuro-oncology, report quality, and reporting language on LLMs&apos; performance was also evaluated. Results LLMs achieved significantly higher (na & iuml;ve vs. knowledge-based; GPT-4o-mini, 77.0% vs. 79.1%, p < 0.001; Qwen2.5 7B, 75.9% vs. 79.5%, p < 0.001; Deepseek-r1 8B, 66.0% vs. 73.2%, p < 0.001) or comparable accuracy (GPT-4.1-mini, 78.7% vs. 78.6%; Llama 3.1 70B, 78.0% vs. 78.1%; Mistral 7B, 58.4% vs. 57.4%) using knowledge-based prompt compared to na & iuml;ve prompt, except for Llama 3.1 8B (65.4% vs. 44.6%, p < 0.001). Differences in accuracy were more pronounced in smaller-sized LLMs. Additionally, the accuracy was significantly higher with reports by neuro-oncology specialists and high-quality reports in all LLMs (p < 0.001). Conclusions LLMs may provide preoperative information on the tumor types of adult-type diffuse gliomas from MRI reports by providing relevant knowledge in the prompt. Informative and descriptive reports could further enhance LLMs&apos; performance.-
dc.languageEnglish-
dc.publisherSpringer International-
dc.relation.isPartOfEUROPEAN RADIOLOGY-
dc.relation.isPartOfEUROPEAN RADIOLOGY-
dc.titlePredicting molecular types of adult-type diffuse gliomas based on MRI reports with large language models-
dc.typeArticle-
dc.contributor.googleauthorSuh, Pae Sun-
dc.contributor.googleauthorLee, Dahyoun-
dc.contributor.googleauthorBang, Chang-Bae-
dc.contributor.googleauthorHan, Kyunghwa-
dc.contributor.googleauthorChoi, Kyu Sung-
dc.contributor.googleauthorKim, Minjae-
dc.contributor.googleauthorPark, Ji Eun-
dc.contributor.googleauthorShin, Na-Young-
dc.contributor.googleauthorAhn, Sung Soo-
dc.contributor.googleauthorChoi, Seung Hong-
dc.contributor.googleauthorKim, Ho Sung-
dc.contributor.googleauthorLee, Seung-Koo-
dc.contributor.googleauthorChang, Jong Hee-
dc.contributor.googleauthorKim, Se Hoon-
dc.contributor.googleauthorFoltyn-Dumitru, Martha-
dc.contributor.googleauthorYou, Seng Chan-
dc.contributor.googleauthorVollmuth, Philipp-
dc.contributor.googleauthorKim, Byung-Hoon-
dc.contributor.googleauthorPark, Yae Won-
dc.identifier.doi10.1007/s00330-025-12211-x-
dc.relation.journalcodeJ00851-
dc.identifier.eissn1432-1084-
dc.identifier.pmid41428044-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordGlioma-
dc.subject.keywordLarge language model-
dc.subject.keywordMagnetic resonance imaging-
dc.contributor.affiliatedAuthorSuh, Pae Sun-
dc.contributor.affiliatedAuthorLee, Dahyoun-
dc.contributor.affiliatedAuthorBang, Chang-Bae-
dc.contributor.affiliatedAuthorHan, Kyunghwa-
dc.contributor.affiliatedAuthorShin, Na-Young-
dc.contributor.affiliatedAuthorAhn, Sung Soo-
dc.contributor.affiliatedAuthorLee, Seung-Koo-
dc.contributor.affiliatedAuthorChang, Jong Hee-
dc.contributor.affiliatedAuthorKim, Se Hoon-
dc.contributor.affiliatedAuthorYou, Seng Chan-
dc.contributor.affiliatedAuthorKim, Byung-Hoon-
dc.contributor.affiliatedAuthorPark, Yae Won-
dc.identifier.scopusid2-s2.0-105025703792-
dc.identifier.wosid001644796800001-
dc.identifier.bibliographicCitationEUROPEAN RADIOLOGY, 2025-12-
dc.identifier.rimsid91024-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorGlioma-
dc.subject.keywordAuthorLarge language model-
dc.subject.keywordAuthorMagnetic resonance imaging-
dc.subject.keywordPlus1P/19Q-CODELETION STATUS-
dc.subject.keywordPlusCLASSIFICATION-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.