3 13

Cited 4 times in

Cited 0 times in

예측모형의 머신러닝 방법론과 통계학적 방법론의 비교: 영상의학 연구에서의 적용

DC Field Value Language
dc.contributor.authorRyu, Leeha-
dc.contributor.authorHan, Kyunghwa-
dc.date.accessioned2026-01-20T02:39:45Z-
dc.date.available2026-01-20T02:39:45Z-
dc.date.created2026-01-14-
dc.date.issued2022-11-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210015-
dc.description.abstractClinical prediction models has been increasingly published in radiology research. In particular, as a radiomics research is being actively conducted, the prediction model is developed based on the traditional statistical model, as well as machine learning, to account for the high-dimensional data. In this review, we investigated the statistical and machine learning methods used in clinical prediction model research, and briefly summarized each analytical method for statistical model, machine learning, and statistical learning. Finally, we discussed several considerations for choosing the prediction modeling method.-
dc.language한국어-
dc.publisherKOREAN SOCIETY OF RADIOLOGY-
dc.relation.isPartOfJOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY-
dc.title예측모형의 머신러닝 방법론과 통계학적 방법론의 비교: 영상의학 연구에서의 적용-
dc.title.alternative[Machine Learning vs. Statistical Model for Prediction Modelling: Application in Medical Imaging Research]-
dc.typeArticle-
dc.contributor.googleauthorRyu, Leeha-
dc.contributor.googleauthorHan, Kyunghwa-
dc.identifier.doi10.3348/jksr.2022.0111-
dc.identifier.pmid36545410-
dc.subject.keywordPrecision Medicine-
dc.subject.keywordMedical Imaging-
dc.subject.keywordClinical Decision Rules-
dc.subject.keywordMachine Learning-
dc.contributor.affiliatedAuthorHan, Kyunghwa-
dc.identifier.scopusid2-s2.0-85188527793-
dc.identifier.wosid001222938600008-
dc.citation.volume83-
dc.citation.number6-
dc.citation.startPage1219-
dc.citation.endPage1228-
dc.identifier.bibliographicCitationJOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY, Vol.83(6) : 1219-1228, 2022-11-
dc.identifier.rimsid90985-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorPrecision Medicine-
dc.subject.keywordAuthorMedical Imaging-
dc.subject.keywordAuthorClinical Decision Rules-
dc.subject.keywordAuthorMachine Learning-
dc.subject.keywordPlusINDIVIDUAL PROGNOSIS-
dc.subject.keywordPlusDIAGNOSIS TRIPOD-
dc.subject.keywordPlusEVENTS-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.