4 19

Cited 0 times in

Cited 0 times in

Computed tomography-based nnU-Net for region-specific brain structural changes across the alzheimer's continuum and frontotemporal dementia subtypes

Authors
 Park, Seongbeom  ;  Kim, Kyoungmin  ;  Lim, Kyoung Yoon  ;  Na, Duk L.  ;  Kim, Hee Jin  ;  Jang, Hyemin  ;  Kim, Jun Pyo  ;  Kang, Sung Hoon  ;  Yun, Jihwan  ;  Chun, Min Young  ;  Seo, Sang Won  ;  Kwak, Kichang 
Citation
 SCIENTIFIC REPORTS, Vol.15(1), 2025-11 
Article Number
 42597 
Journal Title
SCIENTIFIC REPORTS
Issue Date
2025-11
MeSH
Aged ; Aged, 80 and over ; Alzheimer Disease* / cerebrospinal fluid ; Alzheimer Disease* / diagnostic imaging ; Alzheimer Disease* / pathology ; Brain* / diagnostic imaging ; Brain* / pathology ; Cognitive Dysfunction / diagnostic imaging ; Cognitive Dysfunction / pathology ; Deep Learning ; Female ; Frontotemporal Dementia* / cerebrospinal fluid ; Frontotemporal Dementia* / diagnostic imaging ; Frontotemporal Dementia* / pathology ; Humans ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Tomography, X-Ray Computed* / methods
Keywords
Alzheimer disease frontotemporal dementia computed tomography ; Brain segmentation ; Deep learning
Abstract
Quantifying structural brain changes is critical for diagnosing and monitoring neurodegenerative diseases. Although magnetic resonance imaging (MRI) is the silver standard, limited accessibility and cost hamper routine use. We developed a deep learning-based framework using the nnU-Net for brain segmentation using computed tomography (CT) to assess cerebrospinal fluid (CSF) volume changes, as an indirect marker of tissue loss, and evaluated its utility across Alzheimer's disease (AD) stages and frontotemporal dementia (FTD) subtypes. We included 2357 participants: cognitively unimpaired (CU, n = 595), mild cognitive impairment (MCI, n = 954), dementia of Alzheimer's type (DAT, n = 663), and FTD subtypes (FTD, n = 145, behavioral variant FTD (bvFTD, n = 66), nonfluent variant primary progressive aphasia (nfvPPA, n = 29), and semantic variant PPA (svPPA, n = 50). CT-based segmentation was trained and validated using 3D T1-weighted MRI as reference. We assessed (1) segmentation accuracy via Dice similarity coefficients (DSCs), (2) reliability and precision using correlation and Bland-Altman analyses, and (3) clinical utility by identifying stage- and region-specific changes in CSF volumes. Key regions, including anterior and posterior lateral ventricles, showed DSCs above 0.93 and correlations ranging from 0.822 to 0.996. CT-based measurements revealed increasing CSF volumes from CU to DAT and distinct patterns of CSF volume enlargement across FTD subtypes. This framework enables accurate, reliable assessment of CSF volume changes as an indirect marker of atrophy, and supports early detection and differential diagnosis.
Files in This Item:
90961.pdf Download
DOI
10.1038/s41598-025-26604-x
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurology (신경과학교실) > 1. Journal Papers
Yonsei Authors
Chun, Min Young(전민영)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/210003
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links