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Quantifying structural brain changes is critical for diagnosing and monitoring neurodegenerative 
diseases. Although magnetic resonance imaging (MRI) is the silver standard, limited accessibility and 
cost hamper routine use. We developed a deep learning–based framework using the nnU-Net for brain 
segmentation using computed tomography (CT) to assess cerebrospinal fluid (CSF) volume changes, 
as an indirect marker of tissue loss, and evaluated its utility across Alzheimer’s disease (AD) stages 
and frontotemporal dementia (FTD) subtypes. We included 2357 participants: cognitively unimpaired 
(CU, n = 595), mild cognitive impairment (MCI, n = 954), dementia of Alzheimer’s type (DAT, n = 663), 
and FTD subtypes (FTD, n = 145, behavioral variant FTD (bvFTD, n = 66), nonfluent variant primary 
progressive aphasia (nfvPPA, n = 29), and semantic variant PPA (svPPA, n = 50). CT-based segmentation 
was trained and validated using 3D T1-weighted MRI as reference. We assessed (1) segmentation 
accuracy via Dice similarity coefficients (DSCs), (2) reliability and precision using correlation and 
Bland–Altman analyses, and (3) clinical utility by identifying stage- and region-specific changes in CSF 
volumes. Key regions, including anterior and posterior lateral ventricles, showed DSCs above 0.93 and 
correlations ranging from 0.822 to 0.996. CT-based measurements revealed increasing CSF volumes 
from CU to DAT and distinct patterns of CSF volume enlargement across FTD subtypes. This framework 
enables accurate, reliable assessment of CSF volume changes as an indirect marker of atrophy, and 
supports early detection and differential diagnosis.

Keywords  Alzheimer disease frontotemporal dementia computed tomography, Brain segmentation, Deep 
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Neurodegenerative diseases, such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD), are 
characterized by progressive neuronal loss, which leads to gyral shrinkage and sulcal widening1–4. Depending 
on each disease’s specific mechanisms and the selective vulnerability of particular brain regions, a unique 
pattern of brain tissue loss and corresponding CSF volume enlargement emerges—shaping the distinct clinical 
phenotypes observed in these conditions5–7. Therefore, quantifying brain structural changes (including CSF 
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volume enlargement as an indirect marker of atrophy) is crucial for differential diagnosis and for monitoring 
the progression of each neurodegenerative disease3. Conventionally, magnetic resonance imaging (MRI) with 
3dimensional (D) T1‐weighted scans has been used to quantify brain atrophy through techniques such as voxel-
based morphometry or cortical thickness measurements8–10. However, MRI can pose risks for patients with 
implantable devices like pacemakers or cardioverter defibrillators, and its cost, limited accessibility, and longer 
acquisition times often make routine clinical use impractical.

Computed tomography (CT) offers a more accessible, rapid, and cost-effective imaging option compared 
to MRI11,12; however, its lower spatial resolution, two-dimensional acquisition in many clinical settings, and 
insufficient contrast between white and gray matter have historically made it difficult to perform automated 
volumetric analyses. As a result, clinicians have largely relied on visually assessing sulcal widening and 
ventricular enlargements—an inherently subjective process prone to inter- and intra-rater variability, prompting 
the development of standardized visual rating scales that still struggle with detecting subtle changes12–14. 
To overcome these challenges, previous research has consistently sought to integrate the rich anatomical 
information from MRI to enhance CT analysis. For example, Rorden et al.15 developed integrated CT-MRI 
atlases to improve anatomical labeling in CT scans, and more recently, Srikrishna et al.16 demonstrated that 
using MRI-derived labels to train deep learning models on CT enables accurate tissue classification. Despite 
such progress, reliably delineating fine structural boundaries across the whole brain remains difficult16–18. 
Building on these foundational concepts, our approach focuses on pronounced changes in CSF volume at sulci 
and ventricle regions, approximates the precision of 3D T1 MRI measurements, and provides detailed, region-
specific information—offering a practical alternative for routine clinical assessment.

A key concept underpinning our work is the distinction between stage‐specific and region‐specific atrophy 
patterns across different neurodegenerative diseases, which in our study are indirectly reflected through changes 
in CSF volumes (ventricular and sulcal enlargement). In AD, tau Braak staging describes a progression of atrophy 
beginning in the medial temporal region, then extending to lateral temporal, parietal, and finally frontal areas7,19. 
Meanwhile, FTD subtypes manifest distinct regional signatures: behavioral variant FTD (bvFTD) typically 
involves widespread atrophy in bilateral frontal and temporal regions20, nonfluent variant PPA (nfvPPA) shows 
predominant atrophy in the left frontal region, and semantic variant PPA (svPPA) presents marked atrophy 
in the left temporal region21,22. These heterogeneous patterns highlight the importance of tailored volumetric 
assessments that can capture both disease progression and subtype-specific vulnerabilities.

In this study, we developed a robust deep learning model for CT-based brain segmentation using nnU-Net 
framework which automatically configures U-Net architectures based on the characteristics of the input dataset, 
to evaluate its clinical utility. First, we compared the segmentation results with 3D T1 MRI—our silver standard—
and then examined the reliability and precision of our CT-based measurements. Finally, we investigated whether 
this approach could capture stage-specific changes in CSF volumes in the AD continuum, as well as the distinct 
region-specific patterns of CSF volume enlargement that characterize FTD subtypes.

Methods
Participants
A total of 2,357 participants who underwent both brain 3D T1 MRI and CT, were recruited from the Samsung 
Medical Center (SMC). The participants comprised individuals with cognitively unimpaired (CU), mild cognitive 
impairment (MCI), and dementia of Alzheimer’s type (DAT). CU individuals demonstrated no subjective 
cognitive complaints or functional impairments, with cognitive performance confirmed to be within normal 
limits through detailed neuropsychological assessments. MCI was diagnosed based on the National Institute 
on Aging-Alzheimer’s Association (NIA-AA) criteria23, characterized by measurable cognitive decline in one 
or more domains without significant interference in daily functional activities. Among the 954 individuals with 
MCI, 96 (10.1%) were classified as single-domain amnestic MCI, 850 (89.1%) as multiple-domain amnestic MCI, 
and 8 (0.8%) as non-amnestic MCI. DAT was diagnosed following the NIA-AA guidelines2, requiring evidence 
of significant cognitive decline, including memory impairment, that interfered with independence in daily life 
and was consistent with an Alzheimer’s disease etiology. Among the 663 individuals with DAT, 641 (96.7%) 
were classified as probable AD, while 22 (3.3%) were classified as possible AD, including logopenic PPA (lvPPA; 
N = 11), posterior cortical atrophy (PCA; N = 8), and frontal variant AD (fvAD; N = 3). Moreover, participants 
with FTD syndromes included those with a clinical diagnosis of bvFTD, nfvPPA, or svPPA. Probable bvFTD 
was clinically defined based on the criteria outlined by Rascovsky et al.20, whereas nfvPPA and svPPA were 
diagnosed based on the criteria provided by Gorno-Tempini et al.22 All FTD syndromes were diagnosed based 
on the patient’s clinical course, neurologic examination, neuropsychological testing, and brain imaging. Amyloid 
PET positivity, defined as a Klunk centiloid value > 20, was available for 2,346 participants and observed in 1,271 
(54.9%) (see Table 1). Clinical diagnoses were made independently of amyloid biomarker results. We excluded 
participants who had any of the following conditions: (1) white matter hyperintensities due to radiation injury, 
multiple sclerosis, vasculitis, leukodystrophy or metabolic disorders; (2) traumatic brain injury; (3) territorial 
infarction; (4) brain tumor; and (5) rapidly progressive dementia(RPD). The RPD and monogenic dementia 
(e.g., MAPT, GRN, C9orf72 expansions) were excluded to focues on degenerative trajectories typical of sporadic 
AD/FTD. Exclusion of RPD relied on clinical judgment by neurologists, and no MMSE cut-off was used.

The study protocol received approval from the Institutional Review Board of SMC. Written informed 
consent was obtained from each participant and all procedures were conducted in accordance with the approved 
guidelines.

An additional set of 250 MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset 
was used to further validate the robustness of the pipeline.
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Neuropsychological tests
Most participants underwent the Seoul Neuropsychological Screening Battery (SNSB)24,25, a standardized tool 
widely used in Korea to assess cognitive function across five domains: attention, memory, language, visuospatial 
ability, and frontal/executive function. The SNSB has been validated and normed in Korea, with normative 
data derived from 1,067 healthy individuals. In this study, we administered the following core SNSB tests26: the 
Korean version of the Boston Naming Test (K-BNT) and the Controlled Oral Word Association Test (COWAT) 
for language; the Rey Complex Figure Test (RCFT, copy score) for visuospatial ability; the Seoul Verbal Learning 
Test (SVLT) and RCFT for verbal and visual memory; and attention/executive tasks including COWAT (animal, 
supermarket, phonemic), the Stroop color–reading test, the Korean Trail-Making Test–Part B (K-TMT-B), and 
Digit Span (forward and backward). Group-level performance measures are summarized in Table 1.

Functional impairment was assessed using the Korean Instrumental Activities of Daily Living (K-IADL) 
scale, a validated tool for elderly populations that evaluates daily functions across multiple domains (e.g., 
grooming, shopping, transportation, medication management). Caregiver input was incorporated to ensure 
accuracy of ratings27.

Acquisition of CT images and 3D T1 images
We acquired CT images from all subjects at Samsung Medical Center using a Discovery STe PET-CT scanner 
(GE Medical Systems, Milwaukee, WI, USA) in the three-dimensional scanning mode, which examines 47, 3.3-
mm thick slices spanning the entire brain. CT images were also acquired using a 16-slice helical CT (140 keV, 
80  mA, 3.75-mm section width) for attenuation correction were reconstructed in a 512 × 512 matrix. Voxel 
size of CT images acquired by PET-CT scanner are 0.5 mm × 0.5 mm × 3.27 mm. The signal-to-noise ratio was 
checked through Phantom study (3.75  mm slice thickness, 120 kVp, 190  mA), and it was conducted by GE 
Discovery STe PET-CT scanner.

To acquire 3D T1 turbo field-echo MRI scans from all participants at SMC, a 3.0 T MRI scanner (Philips 3.0 T 
Achieva; Philips Healthcare, Andover, MA, USA) was used with following parameters: sagittal slice thickness of 
1.0 mm with 50% overlap, repletion time (TR) of 9.9 ms, echo time (TE) of 4.6 ms, flip angle of 8°, and matrix 
size of 240 × 240 pixels reconstructed to 480 × 480 over a field of view of 240 mm.

Preprocessing
Preprocessing was performed on three different brain imaging modalities prior to applying the deep learning 
segmentation model (Fig. 1a). First, the 3D T1 images were resampled to 1 mm isotropic voxels and segmented 
using the SynthSeg function in FreeSurfer (v7.4.2; http://surfer.nmr.mgh.harvard.edu/)28,29. Subsequently, a 
stereotaxic atlas was employed to subdivide the cerebrospinal fluid (CSF) regions into 14 distinct areas. The 
CSF adjacent to the gray matter was partitioned into eight regions corresponding to the left and right frontal, 
occipital, parietal, and temporal lobes. Additionally, the lateral ventricle (LV) were divided into six regions, 
comprising the left and right anterior, posterior, and inferior regions30,31.

The CT images were first corrected for brain tissue Hounsfield units (HU) and then co-registered to the 
corresponding T1 MRI using Advanced Normalization Tools32. The details of the HU correction method are 
described in the original methodology paper15.

To generate synthetic images, we randomly selected one of the pre-segmented label maps with detailed 
brain region annotations and applied geometric augmentation through random spatial transformations. Then, 
we generated preliminary images by sampling from a randomly initialized Gaussian mixture model (GMM), 
conditioned on the transformed label map. The generated images undergo a series of sequential transformations, 
including random bias field augmentation, noise injection, intensity rescaling to a range between 0 and 1, and 
voxel-wise exponentiation. To simulate low-resolution and partial volume effects, we further apply Gaussian 
blurring followed by random low-resolution subsampling. Finally, training pairs are obtained by defining the 
deformed label map as ground truth and resampling the low-resolution images back to the 1  mm isotropic 
voxels. These synthetic images were incorporated at the training stage together with real CT/MRI data. They 
were designed to mimic rare anatomical variants, noise, and intensity differences that are underrepresented in 
clinical datasets, thereby improving the model’s robustness and generalizability.

Segmentation methods for regions of cerebrospinal fluid
The algorithm for computing CSF volume and W-score33 for each region of interest (ROI) volume follows a 
structured pipeline. The W-score is a statistical metric that adjusts for specific covariates, namely age, sex, and 
imaging modality (Fig. 1d). An overview of the proposed workflow is presented in Fig. 1. In the first step, to 
enable accurate segmentation of the CSF regions, we utilized a multi-modal training dataset comprising MRI, 
CT, and synthetic images (Fig. 1b). Further details are provided in Supplementary Table 1. In this step, the ROIs 
generated during the preprocessing stage were defined as the ground truth and shared with the co-registered CT, 
ensuring that each imaging modality had a corresponding label map.

We employed 3D nnU-Net model34, a self-configuration deep learning-based segmentation framework, 
which automatically adapts its architecture and training pipeline to the given dataset. We selected the 3D nnU-
Net because its superior performance and flexibility have been consistently demonstrated across numerous 
publications and international segmentation challenges35. This self-configuring design minimizes manual 
tuning and reduces the risk of overfitting. Model performance was evaluated using fivefold cross-validation. 
Preprocessed images were further refined using the default nnUNet preprocessor and were trained based on the 
following implementation details: leaky rectified linear unit as the activation function, and loss function was a 
combination of Dice loss and cross-entropy loss. The stochastic gradient descent was adopted as the optimizer, 
with a learning rate of 1e−2, a weight decay of 3e−5, and trained for 1000 epochs. The batch size was set to 2. For 
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model evaluation, we used the Dice similarity coefficient (DSC) to quantify the overlap between ground truth 
and the predicted segmentation. The DSC was computed as follows Eq. (1):

	
DSC = 2 × T P

2 × T P + F P + F N
� (1)

where TP denotes true positive, FP denotes false positives, and FN denotes false negatives. The volumes of each 
ROI were computed by summing the voxel values within the predicted ROIs, with each voxel representing the 
presence or absence of a target region.

Regression for W-score of each region of cerebrospinal fluid
To assess the deviation of CSF volume in each ROI from an expected normative value, we employed a W-score 
based on CSF volumes normalized by ICV (Fig. 1c). This approach enables the identification of region-specific 
changes in CSF volume while accounting for individual differences.

The expected CSF volume for each ROI was estimated using a multiple linear regression model trained on 
1200 scans (600 MR and 600 CT scans) from CU subjects. The regression model was formulated as follows 
Eq. (2):

	 P (A, S, M) = β0 + β1Age × Age + β2Sex × Sex + β3Modality × Modality + Residuals� (2)

where age, sex, and modality were included as covariates to account for individual differences. The modality 
variable in Eq. (2) distinguishes between MRI and CT scans, allowing the model to adjust for imaging-related 
differences. The regression coefficients and model performance metrics are provided in Supplementary Table 2.

The W-score for each ROI was then computed as follows Eq. (3):

	
W = −VROI − P (A, S, E)

σWROI

� (3)

Fig. 1.  Overview of the proposed framework for CSF volume analysis and W-score calculation pipeline in 
this study. The figure illustrates the algorithmic modeling process for measuring volume and W-score of 
each ROI: (a) Preprocessed input images, (b) Ground truth segmentation labels for CSF regions (14 ROIs) 
used to train the model, (c) Example output segmentation from CT and MRI, (d) Multiple linear regression 
model, (e) W-score calculation. The pipeline consists of two main steps: Segmentation and regression. In the 
segmentation step, the model is trained using preprocessed multimodal images (MRI, CT, and synthetic), 
along with ground truth segmentation labels for multiple ROIs. The regression model is designed to calculate 
W-score using the segmented volume, demographics factors (age and sex), and imaging modality. The Total 
CSF volume is defined as the sum of the CSF volumes across all predefined ROIs. The W-score is computed 
for further analysis. Abbreviations: MRI = magnetic resonance imaging; CT = computed tomography; 
HU = housefield unit; ROI = region of interest; CSF = cerebrospinal fluid volume; ICV = intracranial volume; 
LV = lateral ventricle.
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where VROI represents the observed CSF volume of the ROI and σWROI  denotes the standard deviation of the 
residuals from normative model in the CU group. Importantly, since an increase in CSF volume is indicative 
of brain tissue loss, we applied a negative sign to the W-score in Eq. (3) to reflect this biological interpretation 
(Fig. 1e). Therefore, lower W-scores indicate enlarged CSF volume or brain atrophy in the respective regions.

Statistical analysis
All statistical analyses were performed using R (R Studio version 2023.12.1 + 402). In the demographic analysis, 
categorical variables were compared using the chi-square tests, while continuous variables were analyzed using 
analysis of variance (ANOVA). Tukey’s post hoc tests were applied. Extreme values exceeding three standard 
deviations from the mean were classified as outliers and excluded from further statistical analysis. For the 
W-score analysis, group differences in continuous variables were also analyzed with an Analysis of variance 
(ANOVA). Tukey’s post hoc tests applied for cognitive stage (CU, MCI and DAT) following ANOVA when 
relevant. For FTD subtype analyses, the same procedure was applied. In both cases, all raw p-values were 
adjusted for multiple comparisons using the false discovery rate (FDR) method, and statistical significance was 
defined as adjusted p < 0.05. In FTD subtype comparisons, correction for multiple comparisons was performed 
using the false discovery rate (FDR). The distribution pattern of the W-scores for each ROI across the groups 
was visualized and analyzed using boxplots. Pearson’s correlation coefficients (r) were calculated to assess the 
relationship between W-score obtained from MR and CT methods. The agreement between W-scores from MR 
and CT methods was further evaluated using a Bland–Altman plot.

Results
Participant characteristics
The demographics of participants are presented in Table 1. A total of 2,357 participants were included in the 
study, consisting of CU (595, 25.2%), MCI (954, 40.5%), DAT (663, 28.1%), bvFTD (66, 2.8%), nfvPPA (29, 
1.2%), or svPPA (50, 2.1%). The mean age was 70 ± 9.6 years, with 57.5% female participants. The average years of 
education was 11.8 ± 4.7, and the mean Mini-Mental State Examination (MMSE) score was 23.1 ± 7.1. Detailed 
neuropsychological test results were presented in Table 1.

Segmentation performance of each ROI
The segmentation performance for 14 region of interests (ROIs) and total CSF was evaluated using the test 
dataset consisting of 983 cases (Fig. 2). The anterior and posterior LV achieved the highest DSC values: 0.937 for 
the left anterior LV, 0.933 for the right anterior LV, 0.935 for the left posterior LV, and 0.932 for the right posterior 
LV. The inferior LV also showed relatively high DSCs, with 0.753 for the left region and 0.756 for the right region. 
Among the extracerebral CSF (eCSF) regions, the DSC values were 0.728 for both the left and right frontal, 0.719 
for the left parietal, 0.717 for the right parietal, 0.695 for the left temporal, and 0.703 for the right temporal. The 
occipital regions showed the lowest performance, with DSC values of 0.564 for the left occipital and 0.570 for the 
right occipital. The overall DSC for the total CSF region was 0.823.

To further evaluate the generalizability of the proposed pipeline, we tested its performance on an independent 
external cohort of 250 MRI scans from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The model 
achieved consistently high Dice scores across brain regions (Supplementary Fig. 1), supporting its robustness 
beyond the original training data. In addition, stratified fivefold cross-validation within the primary dataset 
demonstrated consistent convergence of training and validation curves and stable pseudo-Dice coefficients 
across folds (Supplementary Fig. 2).

Correlation between CT-derived and MRI-derived CSF W-scores across different ROIs
As shown in Fig. 3a, scatter plots show the relationship between the CT-based and MRI-derived W-scores, with 
a strong linear correlation observed in most ROIs. The correlation coefficients (r) ranged from 0.822 to 0.996, 
indicating high agreement between CT-based and MRI-derived W-scores. LV ROIs (Left and Right anterior LV, 
posterior LV, and inferior LV) exhibited the highest correlations (r > 0.98), suggesting that ventricular volume 
estimation is highly consistent across both modalities. In contrast, eCSF regions such as the parietal and occipital 
CSF demonstrated slightly lower correlations (r ≈ 0.82–0.90), potentially due to the lower contrast resolution of 
CT in distinguishing cortical structures compared to MRI.

The Bland–Altman plots presented in Fig. 3b illustrate the differences between CT-based and MRI-derived 
brain W-score measurements across various ROIs. Across most ROIs, the mean differences between CT-based 
and MRI-derived measurements were close to zero, indicating minimal bias. However, specific ROIs, particularly 
those in the occipital and temporal regions, displayed greater variability in the differences, as evidenced by wider 
limits of agreement. This suggests that CT-based measurements may slightly underestimate or overestimate 
brain volumes in these areas compared to MRI.

Regional variations in W-scores among CU, MCI, and DAT
Figure 4a shows the distribution and statistical significance of W-scores for each ROI across the CU, MCI, and 
DAT groups in the CT-based method (Fig. 4a). All ROIs showed significant differences in W-scores between CU 
and both MCI and DAT groups (all, p value < 0.05), indicating consistent patterns of differentiation across the 
two methods. Significant differences in W-scores between MCI and DAT groups were observed across all ROIs 
in two methods (all, p value < 0.05). To provide a group-level overview of these patterns, we reorganized the 
boxplots by group (Supplementary Fig. 3a).
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Regional variations in W-scores among FTD subtypes
In Fig. 4b, we compared boxplots of various ROIs among CU, DAT, and FTD subtypes. In the left hemisphere, 
FTD subtypes showed significant differences compared to CU across all ROIs. When comparing FTD subtypes 
with DAT, bvFTD exhibited reduced volumes in the anterior LV, frontal, and temporal regions; svPPA 
demonstrated significant volume increases in the temporal region and inferior lateral ventricle; and nfvPPA 
showed lower volumes in the anterior LV, with a trend in the frontal region. In contrast, in the right hemisphere, 
bvFTD showed a similar trend to that observed in the left hemisphere, whereas the language variants (svPPA 
and nfvPPA) did not show significant differences from DAT. These complementary group-level patterns are 
also illustrated in Supplementary Fig. 3b. A representative stereotaxic atlas illustrating these 14 subdivisions is 
provided in Supplementary Fig. 4.

W-scores across CDR stages
W-scores tracked disease severity within diagnostic groups, showing progressive decreases across higher CDR 
stages in both AD and FTD cohorts (Supplementary Fig.  5). These resultsThese indicate that W-scores are 
sensitive to within-group variation in disease severity, complementing their utility in cross-sectional group 
differentiation.

Discussion
In this study, we developed a robust deep learning framework for CT‐based brain segmentation, and applied it 
to differentiate cognitive stages in AD as well as to distinguish distinct FTD subtypes. Our major findings were 
as follows. First, segmentation performance, evaluated using DSC, showed excellent agreement with the silver 
standard (3D T1 MRI segmentation), confirming the reliability of our CT‐based method. Second, there was 
a strong correlation between CT‐based measurements and 3D T1‐based measurements, with Bland–Altman 
analysis revealing minimal bias and narrow limits of agreement. Third, CT‐based measurements effectively 
distinguish between CU, MCI, and DAT, reflecting the algorithm’s ability to detect stage-specific changes in CSF 

Fig. 2.  Evaluation of segmentation performance for predicted CSF volumes. The figure illustrates the 
segmentation performance of the proposed model, evaluating using the dice similarity coefficient against 
the silver standard. Abbreviations: CSF = cerebrospinal fluid volume; Left Anterior LV = left anterior lateral 
ventricle; Right Anterior LV = right anterior lateral ventricle; Left Posterior LV = left posterior lateral ventricle; 
Right Posterior LV = right posterior lateral ventricle; Left Inf Lat Vent = left inferior lateral ventricle; Right 
Inf Lat Vent = right inferior lateral ventricle; Left Frontal = left frontal CSF; Right Frontal = right frontal CSF; 
Left Temporal = left temporal CSF; Right Temporal = right temporal CSF; Left Parietal = left parietal CSF; 
Right Parietal = right parietal CSF; Left Occipital = left occipital CSF; Right Occipital = right occipital CSF; 
TotalCSF = total CSF.
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volumes. Finally, FTD subtypes exhibited distinct, region-specific patterns of CSF volume enlargement and a 
relative hemispheric asymmetry in these changes, which is consistent with clinical phenotypes. Taken together, 
our findings demonstrate that CT‐based volumetric analysis not only replicates 3D T1 MRI measurements with 
high fidelity but also provides detailed, region-specific information that aligns with clinical phenotypes. These 
results underscore the superior clinical readiness of CT‐based assessment as a practical tool for early diagnosis 
and monitoring of neurodegenerative disorders, a capability that is critical for differential diagnosis.

Our first major finding was that segmentation performance exhibited excellent concordance with the silver 
standard (3D T1 MRI segmentation), affirming the robustness of our CT‐based method. Our detailed analysis 
revealed that the anterior and posterior lateral ventricles achieved DSCs above 0.93, while the inferior lateral 
ventricles and eCSF regions in the frontal, parietal, and temporal lobes also performed well. Notably, the 
occipital regions displayed the lowest DSC values; however, since occipital involvement is typically observed 
only in advanced stages of neurodegenerative diseases36 (except in posterior cortical atrophy), this limitation 
is less critical for early diagnosis. Taken together, our findings suggest that our CT‐based approach reliably 
approximates 3D T1-based measurements, offering significant clinical utility due to CT’s superior accessibility 
and readiness for routine neurodegenerative assessment.

Segmentation performance was slightly lower in the inferior LV and occipital CSF regions, likely reflecting 
both anatomical complexity (e.g., smaller structures, partial volume effects) and reduced image contrast. 
Furthermore, the use of a silver-standard reference may have introduced variability, as automated labels are 
not fully accurate across all participants. These factors together likely contributed to the consistent lowering of 
Dice scores across regions. Importantly, similar regional patterns of reduced segmentation performance have 
been reported in MRI-based studies, suggesting that these challenges are not modality-specific but rather reflect 
intrinsic anatomical and methodological factors.

Our second major finding was that CT‐based measurements and 3D T1‐based measurements demonstrated 
a very strong linear correlation across multiple ROIs. As shown in Fig.  3, scatter plots revealed correlation 
coefficients ranging from 0.822 to 0.996, with lateral ventricular ROIs—specifically, the left and right anterior, 
posterior, and inferior lateral ventricles—exhibiting the highest correlations (r > 0.98). Bland–Altman analysis 
also confirmed this strong agreement by showing minimal bias and narrow limits of agreement between the two 
modalities. These results are consistent with previous studies such as Srikrishna et al.16 Moreover, while previous 

Fig. 3.  (a) Scatter plots showing the correlation between CT‐derived and MRI‐derived W‐score 
measurements, and (b) Bland‐Altman plots comparing CT‐ and MRI‐based methods. The analysis includes 
the following ROIs for both the left and right hemispheres: anterior lateral ventricle (Anterior LV), posterior 
lateral ventricle (Posterior LV), inferior lateral ventricle (Inferior LV), frontal CSF, temporal CSF, parietal CSF, 
and occipital CSF: MRI = magnetic resonance imaging; CT = computed tomography; LV = lateral ventricle; 
CSF = cerebrospinal fluid; R = right; L = left.
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studies primarily focused on whole-brain segmentation by distinguishing CSF, gray matter, and white matter16,37, 
our approach measures areas with pronounced changes in CSF volume—such as ventricular enlargement and 
sulcal widening that are carefully evaluated by radiologists—and analyzes the resulting region-specific CSF 
volume enlargement patterns. Additionally, our method provides detailed lobe-specific and hippocampal CSF 
volume assessments, which not only facilitate early AD diagnosis—given that the hippocampus is one of the 
earliest affected regions38—but also enable differentiation of FTD subtypes based on distinct lobe-specific CSF 
volume change patterns.

Our third major finding was that CT‐based measurements effectively distinguish between CU, MCI, and 
DAT, reflecting stage-specific changes in CSF volumes. Although we initially had concerns that emphasizing 
pronounced changes in CSF volume might compromise sensitivity to subtle structural changes, our findings 
demonstrated significant differences in W-scores across all ROIs at the MCI status relative to CU, with further 
distinctions observed between DAT and MCI. W-scores progressively decreased from CU to DAT, suggesting 
increased CSF volume associated with advanced tissue loss. These results underscore the sensitivity of our CT‐
based method for tracking structural brain changes across the disease continuum.

Our final major finding was that FTD subtypes exhibited distinct, region-specific patterns of CSF volume 
enlargement that indirectly reflect tissue loss consistent with clinical phenotypes. In particular, bvFTD 
demonstrated prominent CSF volume increases in bilateral frontal (enlargements in the anterior ventricles 
and frontal eCSF) and temporal (enlargements in the inferior lateral ventricle and temporal eCSF) regions. In 
contrast, nfvPPA was characterized primarily by increased CSF volume in the left frontal region, while svPPA 
showed marked volume enlargement in the left temporal region. Notably, for the language variants, several 
ROIs in the right hemisphere—especially in posterior regions (including the posterior ventricle, parietal, and 
occipital eCSF areas)—did not differ significantly from CU, highlighting selective vulnerability. These findings 
underscore that our CT-based regional volumetric analysis could effectively differentiate between DAT and FTD 
subtypes—a capability that is critical for differential diagnosis. Moreover, our CDR stage-wise analyses further 
demonstrated that W-scores captured disease severity within diagnostic groups, with progressive declines 

Fig. 4.  Box plots of W‐scores for CSF in ROI, showing regional variations in (a) the CU, MCI, and DAT 
and (b) FTD subtypes (bvFTD, nfvPPA, svPPA). All W-scores are derived from CT-based segmentation. An 
asterisk (*) indicates a significant difference from CU, and a dagger (†) indicates a significant difference from 
DAT, based on adjusted p < 0.05 after false discovery rate (FDR) correction. Abbreviations: CT = computed 
tomography; LV = lateral ventricle; CSF = cerebrospinal fluid; ROI = region of interest; CU = cognitively 
unimpaired; MCI = mild cognitive impairment; DAT = dementia of Alzheimer’s type; bvFTD = behavioural 
variant frontotemporal dementia; nfvPPA = nonfluent variant primary progressive aphasia; svPPA = semantic 
variant primary progressive aphasia.
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observed across higher stages. Importantly, regional trajectories differed between AD and FTD, consistent with 
their distinct underlying pathologies. These findings underscore the potential of CT-based W-scores as not only 
cross-sectional biomarkers but also as practical indices of clinical staging.

Our study leverages CSF volume differences in CT images across multiple ROIs to achieve robust, 
reproducible segmentation and quantification over diverse imaging conditions, as well as across cognitive stages 
and FTD subtypes. However, there were several limitations. First, the inherent lower soft-tissue contrast of CT 
compared to MRI limits the accurate delineation of fine cortical structures, leading to reduced performance 
in regions such as the occipital lobe. Second, although our CT-based method provides detailed region-specific 
CSF volume assessments, it may be less sensitive to subtle early-stage changes compared to advanced MRI 
techniques. Also, the limited sample size for certain FTD subtypes, particularly nfvPPA, may constrain the 
generalizability and statistical power of our findings. Third, while robustness was supported by stratified fivefold 
cross-validation within the primary dataset and further confirmed using an independent cohort of MRI scans 
from the ADNI study, true external validation with independent CT datasets was not performed. Establishing 
generalizability in such CT cohorts will be an essential step to confirm the clinical applicability of our framework. 
Fourth, our cohort was recruited from a tertiary referral center, leading to potential sampling bias such as an 
overrepresentation of cognitively impaired individuals and an FTD group with overlapping age distribution 
with AD. Moreover, MMSE may underestimate disease severity in some FTD subtypes. While this heterogeneity 
limits strict representativeness, it underscores the pipeline’s robustness in real-world clinical settings where such 
variability is common. Finally, although the W score-based pipeline shows promise for clinical translation, it 
has not yet been directly compared with clinician visual ratings and should be considered a complementary 
tool requiring further validation and workflow optimization for routine use in dementia clinics. In the future, it 
will also be important to extend this approach beyond group-level validation to evaluate its potential utility for 
single-subject classification, for example, distinguishing AD from FTD in individual patients using CT scans. 
Nonetheless, our findings provide valuable insights into the potential of CT‐based segmentation for capturing 
clinically relevant patterns of CSF volume enlargement and differentiating between cognitive stages and FTD 
subtypes, supporting its utility as a practical tool for early diagnosis, monitoring disease progression, and aiding 
differential diagnosis of dementia.

Conclusion
In summary, our CT‐based volumetric analysis not only replicates 3D T1 MRI measurements with high fidelity 
but also provides detailed insights by capturing stage‐specific changes in CSF volumes that effectively differentiate 
cognitive stages in AD, as well as region‐specific CSF volume enlargement patterns that enable the distinction of 
FTD subtypes. These findings underscore the clinical utility of CT‐based assessments as a practical, accessible 
tool for early diagnosis, monitoring, and differential diagnosis of neurodegenerative disorders such as AD and 
FTD subtypes.

Data availability
The dataset(s) supporting the conclusions of this article is(are) included within the article (and its additional 
file(s)).
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