4 19

Cited 0 times in

Cited 0 times in

Computed tomography-based nnU-Net for region-specific brain structural changes across the alzheimer's continuum and frontotemporal dementia subtypes

DC Field Value Language
dc.contributor.authorPark, Seongbeom-
dc.contributor.authorKim, Kyoungmin-
dc.contributor.authorLim, Kyoung Yoon-
dc.contributor.authorNa, Duk L.-
dc.contributor.authorKim, Hee Jin-
dc.contributor.authorJang, Hyemin-
dc.contributor.authorKim, Jun Pyo-
dc.contributor.authorKang, Sung Hoon-
dc.contributor.authorYun, Jihwan-
dc.contributor.authorChun, Min Young-
dc.contributor.authorSeo, Sang Won-
dc.contributor.authorKwak, Kichang-
dc.date.accessioned2026-01-20T02:39:40Z-
dc.date.available2026-01-20T02:39:40Z-
dc.date.created2026-01-14-
dc.date.issued2025-11-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/210003-
dc.description.abstractQuantifying structural brain changes is critical for diagnosing and monitoring neurodegenerative diseases. Although magnetic resonance imaging (MRI) is the silver standard, limited accessibility and cost hamper routine use. We developed a deep learning-based framework using the nnU-Net for brain segmentation using computed tomography (CT) to assess cerebrospinal fluid (CSF) volume changes, as an indirect marker of tissue loss, and evaluated its utility across Alzheimer's disease (AD) stages and frontotemporal dementia (FTD) subtypes. We included 2357 participants: cognitively unimpaired (CU, n = 595), mild cognitive impairment (MCI, n = 954), dementia of Alzheimer's type (DAT, n = 663), and FTD subtypes (FTD, n = 145, behavioral variant FTD (bvFTD, n = 66), nonfluent variant primary progressive aphasia (nfvPPA, n = 29), and semantic variant PPA (svPPA, n = 50). CT-based segmentation was trained and validated using 3D T1-weighted MRI as reference. We assessed (1) segmentation accuracy via Dice similarity coefficients (DSCs), (2) reliability and precision using correlation and Bland-Altman analyses, and (3) clinical utility by identifying stage- and region-specific changes in CSF volumes. Key regions, including anterior and posterior lateral ventricles, showed DSCs above 0.93 and correlations ranging from 0.822 to 0.996. CT-based measurements revealed increasing CSF volumes from CU to DAT and distinct patterns of CSF volume enlargement across FTD subtypes. This framework enables accurate, reliable assessment of CSF volume changes as an indirect marker of atrophy, and supports early detection and differential diagnosis.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.subject.MESHAged-
dc.subject.MESHAged, 80 and over-
dc.subject.MESHAlzheimer Disease* / cerebrospinal fluid-
dc.subject.MESHAlzheimer Disease* / diagnostic imaging-
dc.subject.MESHAlzheimer Disease* / pathology-
dc.subject.MESHBrain* / diagnostic imaging-
dc.subject.MESHBrain* / pathology-
dc.subject.MESHCognitive Dysfunction / diagnostic imaging-
dc.subject.MESHCognitive Dysfunction / pathology-
dc.subject.MESHDeep Learning-
dc.subject.MESHFemale-
dc.subject.MESHFrontotemporal Dementia* / cerebrospinal fluid-
dc.subject.MESHFrontotemporal Dementia* / diagnostic imaging-
dc.subject.MESHFrontotemporal Dementia* / pathology-
dc.subject.MESHHumans-
dc.subject.MESHMagnetic Resonance Imaging-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHTomography, X-Ray Computed* / methods-
dc.titleComputed tomography-based nnU-Net for region-specific brain structural changes across the alzheimer's continuum and frontotemporal dementia subtypes-
dc.typeArticle-
dc.contributor.googleauthorPark, Seongbeom-
dc.contributor.googleauthorKim, Kyoungmin-
dc.contributor.googleauthorLim, Kyoung Yoon-
dc.contributor.googleauthorNa, Duk L.-
dc.contributor.googleauthorKim, Hee Jin-
dc.contributor.googleauthorJang, Hyemin-
dc.contributor.googleauthorKim, Jun Pyo-
dc.contributor.googleauthorKang, Sung Hoon-
dc.contributor.googleauthorYun, Jihwan-
dc.contributor.googleauthorChun, Min Young-
dc.contributor.googleauthorSeo, Sang Won-
dc.contributor.googleauthorKwak, Kichang-
dc.identifier.doi10.1038/s41598-025-26604-x-
dc.relation.journalcodeJ02646-
dc.identifier.eissn2045-2322-
dc.identifier.pmid41315482-
dc.subject.keywordAlzheimer disease frontotemporal dementia computed tomography-
dc.subject.keywordBrain segmentation-
dc.subject.keywordDeep learning-
dc.contributor.affiliatedAuthorChun, Min Young-
dc.identifier.scopusid2-s2.0-105023432751-
dc.identifier.wosid001627750600020-
dc.citation.volume15-
dc.citation.number1-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, Vol.15(1), 2025-11-
dc.identifier.rimsid90961-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorAlzheimer disease frontotemporal dementia computed tomography-
dc.subject.keywordAuthorBrain segmentation-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordPlusASSOCIATION WORKGROUPS-
dc.subject.keywordPlusDIAGNOSTIC GUIDELINES-
dc.subject.keywordPlusNATIONAL INSTITUTE-
dc.subject.keywordPlusDISEASE-
dc.subject.keywordPlusATROPHY-
dc.subject.keywordPlusCT-
dc.subject.keywordPlusRECOMMENDATIONS-
dc.subject.keywordPlusSEGMENTATION-
dc.subject.keywordPlusMRI-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.identifier.articleno42597-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurology (신경과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.