3 5

Cited 0 times in

Cited 0 times in

Clinical Applications, Challenges & Pitfalls, and Recommendations for Large Language Model and Generative AI in Musculoskeletal Imaging

DC Field Value Language
dc.contributor.authorPark, Jiwoo-
dc.contributor.authorLee, Ji Hyun-
dc.contributor.authorYoon, Min A.-
dc.contributor.authorKim, Dong Hyun-
dc.contributor.authorJung, Joon-Yong-
dc.contributor.authorLee, Young Han-
dc.date.accessioned2025-12-03T08:18:32Z-
dc.date.available2025-12-03T08:18:32Z-
dc.date.created2025-11-21-
dc.date.issued2025-09-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209433-
dc.description.abstractGenerative AI-including Generative Adversarial Networks, diffusion models, Large Language Models (LLMs), and more recently, vision-language models-is increasingly utilized in clinical practice for musculoskeletal imaging tasks such as disease diagnosis, image enhancement, image reconstruction, electronic health record summarization, and radiologic report generation. Integrating these technologies into radiology workflows can significantly advance radiology report generation, structured reporting, and patient-centered communication. However, challenges such as hallucination, bias, and performance drift remain persistent issues. Ensuring the safe and reliable use of LLMs in radiology requires domain-specific training, robust validation, and enhanced data privacy measures. This review summarizes available evidence regarding the potential utility of generative AI in musculoskeletal imaging and radiologic reporting, as well as the challenges and pitfalls in its application. Recommendations for future advancements and clinical translation are also discussed.-
dc.language영어-
dc.publisherKOREAN SOCIETY OF RADIOLOGY-
dc.relation.isPartOfJOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY-
dc.titleClinical Applications, Challenges & Pitfalls, and Recommendations for Large Language Model and Generative AI in Musculoskeletal Imaging-
dc.title.alternative근골격 영상의학에서 대형 언어 모델과 생성형 인공지능의 임상 적용, 과제 및 한계, 그리고 향후 활용을 위한 권고사항-
dc.typeArticle-
dc.contributor.googleauthorPark, Jiwoo-
dc.contributor.googleauthorLee, Ji Hyun-
dc.contributor.googleauthorYoon, Min A.-
dc.contributor.googleauthorKim, Dong Hyun-
dc.contributor.googleauthorJung, Joon-Yong-
dc.contributor.googleauthorLee, Young Han-
dc.identifier.doi10.3348/jksr.2025.0018-
dc.identifier.pmid41113385-
dc.subject.keywordGenerative Artificial Intelligence-
dc.subject.keywordArtificial Intelligence-
dc.subject.keywordLarge Language Model-
dc.subject.keywordVision Language Model-
dc.subject.keywordMusculoskeletal Radiology-
dc.contributor.affiliatedAuthorPark, Jiwoo-
dc.contributor.affiliatedAuthorLee, Young Han-
dc.identifier.wosid001585980400001-
dc.citation.volume86-
dc.citation.number5-
dc.citation.startPage655-
dc.citation.endPage670-
dc.identifier.bibliographicCitationJOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY, Vol.86(5) : 655-670, 2025-09-
dc.identifier.rimsid90118-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorGenerative Artificial Intelligence-
dc.subject.keywordAuthorArtificial Intelligence-
dc.subject.keywordAuthorLarge Language Model-
dc.subject.keywordAuthorVision Language Model-
dc.subject.keywordAuthorMusculoskeletal Radiology-
dc.subject.keywordPlusPRIMER-
dc.subject.keywordPlusGUIDE-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.