0 8

Cited 0 times in

Cited 0 times in

Functional assessment of all ATM SNVs using prime editing and deep learning

DC Field Value Language
dc.contributor.author김형범-
dc.contributor.author조성래-
dc.date.accessioned2025-12-02T06:16:37Z-
dc.date.available2025-12-02T06:16:37Z-
dc.date.issued2025-09-
dc.identifier.issn0092-8674-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209180-
dc.description.abstractAtaxia telangiectasia mutated (ATM), a large gene with 63 exons, plays a critical role in the DNA damage response, and its loss of function increases cancer risk and affects the prognosis of cancer patients. However, interpreting the functional impact of ATM variants remains challenging because most are variants of uncertain significance (VUSs). Here, we assessed the functions of all 27,513 possible single-nucleotide variants (SNVs) in ATM. By using prime editing, we experimentally evaluated the effects of 23,092 SNVs on cell fitness in the presence of olaparib, thereby identifying critical residues. Using cancer genetics data and UK Biobank data, we found that our results are useful for estimating both cancer risk and prognosis. We also developed a deep learning model, DeepATM, which predicted such functional effects of the remaining 4,421 SNVs with unprecedentedly high accuracy. This complete evaluation of ATM variants supports precision medicine and provides a framework for addressing VUSs in other genes.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherCell Press-
dc.relation.isPartOfCELL-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAtaxia Telangiectasia Mutated Proteins* / genetics-
dc.subject.MESHAtaxia Telangiectasia Mutated Proteins* / metabolism-
dc.subject.MESHDeep Learning*-
dc.subject.MESHGene Editing / methods-
dc.subject.MESHHumans-
dc.subject.MESHNeoplasms / genetics-
dc.subject.MESHPhthalazines / pharmacology-
dc.subject.MESHPiperazines / pharmacology-
dc.subject.MESHPolymorphism, Single Nucleotide* / genetics-
dc.subject.MESHPrognosis-
dc.titleFunctional assessment of all ATM SNVs using prime editing and deep learning-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Pharmacology (약리학교실)-
dc.contributor.googleauthorKwang Seob Lee-
dc.contributor.googleauthorJoon-Goo Min-
dc.contributor.googleauthorYumin Cheong-
dc.contributor.googleauthorHyeong-Cheol Oh-
dc.contributor.googleauthorSeung-Youn Jung-
dc.contributor.googleauthorJeong-In Park-
dc.contributor.googleauthorMyungjae Song-
dc.contributor.googleauthorJung Hwa Seo-
dc.contributor.googleauthorSung-Rae Cho-
dc.contributor.googleauthorHyongbum Henry Kim-
dc.identifier.doi10.1016/j.cell.2025.05.046-
dc.contributor.localIdA01148-
dc.contributor.localIdA03831-
dc.relation.journalcodeJ00472-
dc.identifier.eissn1097-4172-
dc.identifier.pmid40580951-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0092867425006348-
dc.subject.keywordATM-
dc.subject.keywordPARP inhibitor-
dc.subject.keywordcancer predisposition-
dc.subject.keyworddeep learning-
dc.subject.keywordprecision medicine-
dc.subject.keywordprime editor-
dc.subject.keywordsaturation genome editing-
dc.subject.keywordvariant of uncertain significance-
dc.contributor.alternativeNameKim, Hyongbum-
dc.contributor.affiliatedAuthor김형범-
dc.contributor.affiliatedAuthor조성래-
dc.citation.volume188-
dc.citation.number18-
dc.citation.startPage5081-
dc.citation.endPage5099-
dc.identifier.bibliographicCitationCELL, Vol.188(18) : 5081-5099, 2025-09-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pharmacology (약리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Rehabilitation Medicine (재활의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.