0 34

Cited 6 times in

Cited 0 times in

Predicting post-hepatectomy liver failure in patients with hepatocellular carcinoma: nomograms based on deep learning analysis of gadoxetic acid-enhanced MRI

DC Field Value Language
dc.contributor.authorJeong, Boryeong-
dc.contributor.authorHeo, Subin-
dc.contributor.authorLee, Seung Soo-
dc.contributor.authorKim, Seon-Ok-
dc.contributor.authorShin, Yong Moon-
dc.contributor.authorKim, Kang Mo-
dc.contributor.authorHa, Tae-Yong-
dc.contributor.authorJung, Dong-Hwan-
dc.contributor.author정보령-
dc.date.accessioned2025-11-18T07:29:09Z-
dc.date.available2025-11-18T07:29:09Z-
dc.date.created2025-03-31-
dc.date.issued2025-05-
dc.identifier.issn0938-7994-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/209028-
dc.description.abstractObjectivesThis study aimed to develop nomograms for predicting post-hepatectomy liver failure (PHLF) in patients with hepatocellular carcinoma (HCC), using deep learning analysis of Gadoxetic acid-enhanced hepatobiliary (HBP) MRI.MethodsThis retrospective study analyzed patients who underwent gadoxetic acid-enhanced MRI and hepatectomy for HCC between 2016 and 2020 at two referral centers. Using a deep learning algorithm, volumes and signal intensities of whole non-tumor liver, expected remnant liver, and spleen were measured on HBP images. Two multivariable logistic regression models were formulated to predict PHLF, defined and graded by the International Study Group of Liver Surgery: one based on whole non-tumor liver measurements (whole liver model) and the other on expected remnant liver measurements (remnant liver model). The models were presented as nomograms and a web-based calculator. Discrimination performance was evaluated using the area under the receiver operating curve (AUC), with internal validation through 1000-fold bootstrapping.ResultsThe study included 1760 patients (1395 male; mean age +/- standard deviation, 60 +/- 10 years), with 137 (7.8%) developing PHLF. Nomogram predictors included sex, gamma-glutamyl transpeptidase, prothrombin time international normalized ratio, platelets, extent of liver resection, and MRI variables derived from the liver volume, liver-to-spleen signal intensity ratio, and spleen volume. The whole liver and the remnant liver nomograms demonstrated strong predictive performance for PHLF (optimism-corrected AUC of 0.78 and 0.81, respectively) and symptomatic (grades B and C) PHLF (optimism-corrected AUC of 0.81 and 0.84, respectively).ConclusionNomograms based on deep learning analysis of gadoxetic acid-enhanced HBP images accurately stratify the risk of PHLF.Key PointsQuestionCan PHLF be predicted by integrating clinical and MRI-derived volume and functional variables through deep learning analysis of gadoxetic acid-enhanced MRI?FindingsWhole liver and remnant liver nomograms demonstrated strong predictive performance for PHLF with the optimism-corrected area under the curve of 0.78 and 0.81, respectively.Clinical relevanceThese nomograms can effectively stratify the risk of PHLF, providing a valuable tool for treatment decisions regarding hepatectomy for HCC.Key PointsQuestionCan PHLF be predicted by integrating clinical and MRI-derived volume and functional variables through deep learning analysis of gadoxetic acid-enhanced MRI?FindingsWhole liver and remnant liver nomograms demonstrated strong predictive performance for PHLF with the optimism-corrected area under the curve of 0.78 and 0.81, respectively.Clinical relevanceThese nomograms can effectively stratify the risk of PHLF, providing a valuable tool for treatment decisions regarding hepatectomy for HCC.Key PointsQuestionCan PHLF be predicted by integrating clinical and MRI-derived volume and functional variables through deep learning analysis of gadoxetic acid-enhanced MRI?FindingsWhole liver and remnant liver nomograms demonstrated strong predictive performance for PHLF with the optimism-corrected area under the curve of 0.78 and 0.81, respectively.Clinical relevanceThese nomograms can effectively stratify the risk of PHLF, providing a valuable tool for treatment decisions regarding hepatectomy for HCC.-
dc.languageEnglish-
dc.publisherSpringer International-
dc.relation.isPartOfEUROPEAN RADIOLOGY-
dc.relation.isPartOfEUROPEAN RADIOLOGY-
dc.subject.MESHAged-
dc.subject.MESHCarcinoma, Hepatocellular* / diagnostic imaging-
dc.subject.MESHCarcinoma, Hepatocellular* / surgery-
dc.subject.MESHContrast Media-
dc.subject.MESHDeep Learning*-
dc.subject.MESHFemale-
dc.subject.MESHGadolinium DTPA*-
dc.subject.MESHHepatectomy* / adverse effects-
dc.subject.MESHHumans-
dc.subject.MESHLiver Failure* / diagnostic imaging-
dc.subject.MESHLiver Failure* / etiology-
dc.subject.MESHLiver Neoplasms* / diagnostic imaging-
dc.subject.MESHLiver Neoplasms* / surgery-
dc.subject.MESHMagnetic Resonance Imaging* / methods-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHNomograms*-
dc.subject.MESHPostoperative Complications* / diagnostic imaging-
dc.subject.MESHPredictive Value of Tests-
dc.subject.MESHRetrospective Studies-
dc.titlePredicting post-hepatectomy liver failure in patients with hepatocellular carcinoma: nomograms based on deep learning analysis of gadoxetic acid-enhanced MRI-
dc.typeArticle-
dc.contributor.googleauthorJeong, Boryeong-
dc.contributor.googleauthorHeo, Subin-
dc.contributor.googleauthorLee, Seung Soo-
dc.contributor.googleauthorKim, Seon-Ok-
dc.contributor.googleauthorShin, Yong Moon-
dc.contributor.googleauthorKim, Kang Mo-
dc.contributor.googleauthorHa, Tae-Yong-
dc.contributor.googleauthorJung, Dong-Hwan-
dc.identifier.doi10.1007/s00330-024-11173-w-
dc.relation.journalcodeJ00851-
dc.identifier.eissn1432-1084-
dc.identifier.pmid39528755-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s00330-024-11173-w-
dc.subject.keywordLiver failure-
dc.subject.keywordHepatectomy-
dc.subject.keywordCarcinoma (Hepatocellular)-
dc.subject.keywordMagnetic resonance imaging-
dc.subject.keywordDeep learning-
dc.contributor.affiliatedAuthorJeong, Boryeong-
dc.identifier.scopusid2-s2.0-85208928267-
dc.identifier.wosid001352519800001-
dc.citation.volume35-
dc.citation.number5-
dc.citation.startPage2769-
dc.citation.endPage2782-
dc.identifier.bibliographicCitationEUROPEAN RADIOLOGY, Vol.35(5) : 2769-2782, 2025-05-
dc.identifier.rimsid85925-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorLiver failure-
dc.subject.keywordAuthorHepatectomy-
dc.subject.keywordAuthorCarcinoma (Hepatocellular)-
dc.subject.keywordAuthorMagnetic resonance imaging-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordPlusRESECTION-
dc.subject.keywordPlusDECOMPENSATION-
dc.subject.keywordPlusCOMPLICATIONS-
dc.subject.keywordPlusPROGNOSIS-
dc.subject.keywordPlusRESERVE-
dc.subject.keywordPlusSCORE-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.identifier.articlenoe0159530-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.