0 3

Cited 0 times in

Cited 0 times in

Deep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study

DC Field Value Language
dc.contributor.authorLee, Seung Yun-
dc.contributor.authorLee, Ji Weon-
dc.contributor.authorJung, Jung Im-
dc.contributor.authorHan, Kyunghhwa-
dc.contributor.authorChang, Suyon-
dc.date.accessioned2025-11-11T05:01:06Z-
dc.date.available2025-11-11T05:01:06Z-
dc.date.created2025-08-19-
dc.date.issued2025-04-
dc.identifier.issn0513-5796-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208616-
dc.description.abstractPurpose: To evaluate the feasibility and utility of deep learning-based computer-aided diagnosis (DL-CAD) for the detection of pulmonary nodules on coronary artery calcium (CAC)-scoring computed tomography (CT). Materials and Methods: This retrospective study included 273 patients (aged 63.9 +/- 13.2 years; 129 men) who underwent CAC- scoring CT. A DL-CAD system based on thin-section images was used for pulmonary nodule detection, and two independent junior readers reviewed the standard CAC-scoring CT scans with and without referencing DL-CAD results. A reference standard was established through the consensus of two experienced radiologists. Sensitivity, positive predictive value, and F1-score were assessed on a per-nodule and per-patient basis. The patients&apos; medical records were monitored until November 2023. Results: A total of 269 nodules were identified in 129 patients. With DL-CAD assistance, the readers&apos; sensitivity significantly improved (65% vs. 80% for reader 1; 82% vs. 86% for reader 2; all p<0.001), without a notable increase in the number of false-positives per case (0.11 vs. 0.13, p=0.078 for reader 1; 0.11 vs. 0.11, p>0.999 for reader 2). Per-patient analysis also enhanced sensitivity with DL-CAD assistance (73% vs. 84%, p<0.001 for reader 1; 89% vs. 91%, p=0.250 for reader 2). During follow-up, lung cancer was diagnosed in four patients (1.5%). Among them, two had lesions detected on CAC-scoring CT, both of which were successfully identified by DL-CAD. Conclusion: DL-CAD based on thin-section images can assist less experienced readers in detecting pulmonary nodules on CAC- scoring CT scans, improving detection sensitivity without significantly increasing false-positives.-
dc.languageEnglish-
dc.publisherYonsei University-
dc.relation.isPartOfYONSEI MEDICAL JOURNAL-
dc.relation.isPartOfYONSEI MEDICAL JOURNAL-
dc.subject.MESHAged-
dc.subject.MESHCalcium / analysis-
dc.subject.MESHCoronary Vessels / diagnostic imaging-
dc.subject.MESHDeep Learning*-
dc.subject.MESHFeasibility Studies-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHImage Interpretation, Computer-Assisted* / methods-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHMultiple Pulmonary Nodules* / diagnosis-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHSensitivity and Specificity-
dc.subject.MESHSolitary Pulmonary Nodule* / diagnosis-
dc.subject.MESHTomography, X-Ray Computed* / methods-
dc.titleDeep Learning-Based Computer-Aided Diagnosis in Coronary Artery Calcium-Scoring CT for Pulmonary Nodule Detection: A Preliminary Study-
dc.typeArticle-
dc.contributor.googleauthorLee, Seung Yun-
dc.contributor.googleauthorLee, Ji Weon-
dc.contributor.googleauthorJung, Jung Im-
dc.contributor.googleauthorHan, Kyunghhwa-
dc.contributor.googleauthorChang, Suyon-
dc.identifier.doi10.3349/ymj.2024.0050-
dc.relation.journalcodeJ02813-
dc.identifier.eissn1976-2437-
dc.identifier.pmid40134084-
dc.identifier.urlhttps://eymj.org/DOIx.php?id=10.3349/ymj.2024.0050-
dc.subject.keywordComputer-aided diagnosis-
dc.subject.keyworddeep learning-
dc.subject.keywordtomography-
dc.subject.keywordX-ray computed-
dc.subject.keywordlung-
dc.subject.keyworddiagnostic performance-
dc.contributor.affiliatedAuthorHan, Kyunghhwa-
dc.identifier.scopusid2-s2.0-105001442731-
dc.identifier.wosid001461251400005-
dc.citation.volume66-
dc.citation.number4-
dc.citation.startPage240-
dc.citation.endPage248-
dc.identifier.bibliographicCitationYONSEI MEDICAL JOURNAL, Vol.66(4) : 240-248, 2025-04-
dc.identifier.rimsid88627-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorComputer-aided diagnosis-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthortomography-
dc.subject.keywordAuthorX-ray computed-
dc.subject.keywordAuthorlung-
dc.subject.keywordAuthordiagnostic performance-
dc.subject.keywordPlusFALSE-POSITIVE REDUCTION-
dc.subject.keywordPlusLUNG NODULES-
dc.subject.keywordPlusRISK-FACTORS-
dc.subject.keywordPlusIMAGES-
dc.subject.keywordPlusDISEASE-
dc.subject.keywordPlusSYSTEM-
dc.type.docTypeArticle-
dc.identifier.kciidART003184316-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalWebOfScienceCategoryMedicine, General & Internal-
dc.relation.journalResearchAreaGeneral & Internal Medicine-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.