1 3

Cited 1 times in

Cited 0 times in

Clinical Application of Artificial Intelligence in Breast Ultrasound

DC Field Value Language
dc.contributor.authorBaek, John-
dc.contributor.authorKim, Jaeil-
dc.contributor.authorKim, Hye Jung-
dc.contributor.authorYoon, Jung Hyun-
dc.contributor.authorPark, Ho Yong-
dc.contributor.authorLee, Jeeyeon-
dc.contributor.authorKang, Byeongju-
dc.contributor.authorZakiryarov, Iliya-
dc.contributor.authorKultaev, Askhat-
dc.contributor.authorSaktashev, Bolat-
dc.contributor.authorKim, Won Hwa-
dc.date.accessioned2025-11-11T01:18:11Z-
dc.date.available2025-11-11T01:18:11Z-
dc.date.created2025-08-19-
dc.date.issued2025-03-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208597-
dc.description.abstractBreast cancer is the most common cancer in women worldwide, and its early detection is critical for improving survival outcomes. As a diagnostic and screening tool, mammography can be less effective owing to the masking effect of fibroglandular tissue, but breast US has good sensitivity even in dense breasts. However, breast US is highly operator dependent, highlighting the need for artificial intelligence (AI)-driven solutions. Unlike other modalities, US is performed using a handheld device that produces a continuous real-time video stream, yielding 12000-48000 frames per examination. This can be significantly challenging forAI development and requires real-time AI inference capabilities. In this review, we classified AI solutions as computer-aided diagnosis and computer-aided detection to facilitate a functional understanding and review commercial software supported by clinical evidence. In addition, to bridge healthcare gaps and enhance patient outcomes in geographically under resourced areas, we propose a novel framework by reviewing the existing AI-based triage workflows including mobile ultrasound.-
dc.formatapplication/pdf-
dc.language영어-
dc.publisherKOREAN SOCIETY OF RADIOLOGY-
dc.relation.isPartOfJOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY-
dc.titleClinical Application of Artificial Intelligence in Breast Ultrasound-
dc.typeArticle-
dc.contributor.googleauthorBaek, John-
dc.contributor.googleauthorKim, Jaeil-
dc.contributor.googleauthorKim, Hye Jung-
dc.contributor.googleauthorYoon, Jung Hyun-
dc.contributor.googleauthorPark, Ho Yong-
dc.contributor.googleauthorLee, Jeeyeon-
dc.contributor.googleauthorKang, Byeongju-
dc.contributor.googleauthorZakiryarov, Iliya-
dc.contributor.googleauthorKultaev, Askhat-
dc.contributor.googleauthorSaktashev, Bolat-
dc.contributor.googleauthorKim, Won Hwa-
dc.identifier.doi10.3348/jksr.2025.0019-
dc.identifier.pmid40201609-
dc.subject.keywordArtificial Intelligence-
dc.subject.keywordBreast Neoplasm-
dc.subject.keywordUltrasonography-
dc.subject.keywordBreast Diseases-
dc.contributor.affiliatedAuthorYoon, Jung Hyun-
dc.identifier.scopusid2-s2.0-105001584804-
dc.identifier.wosid001475080000002-
dc.citation.volume86-
dc.citation.number2-
dc.citation.startPage216-
dc.citation.endPage226-
dc.identifier.bibliographicCitationJOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY, Vol.86(2) : 216-226, 2025-03-
dc.identifier.rimsid88658-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorArtificial Intelligence-
dc.subject.keywordAuthorBreast Neoplasm-
dc.subject.keywordAuthorUltrasonography-
dc.subject.keywordAuthorBreast Diseases-
dc.subject.keywordPlusULTRASONOGRAPHY-
dc.subject.keywordPlusAGREEMENT-
dc.type.docTypeReview-
dc.identifier.kciidART003188113-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.