4 17

Cited 0 times in

Cited 0 times in

Automated extracellular volume fraction measurement for diagnosis and prognostication in patients with light-chain cardiac amyloidosis

DC Field Value Language
dc.contributor.authorHwang, In-Chang-
dc.contributor.authorChun, Eun Ju-
dc.contributor.authorKim, Pan Ki-
dc.contributor.authorKim, Myeongju-
dc.contributor.authorPark, Jiesuck-
dc.contributor.authorChoi, Hong-Mi-
dc.contributor.authorYoon, Yeonyee E.-
dc.contributor.authorCho, Goo-Yeong-
dc.contributor.authorChoi, Byoung Wook-
dc.date.accessioned2025-11-10T07:37:40Z-
dc.date.available2025-11-10T07:37:40Z-
dc.date.created2025-08-19-
dc.date.issued2025-01-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208581-
dc.description.abstractAims T1 mapping on cardiac magnetic resonance (CMR) imaging is useful for diagnosis and prognostication in patients with light-chain cardiac amyloidosis (AL-CA). We conducted this study to evaluate the performance of T1 mapping parameters, derived from artificial intelligence (AI)-automated segmentation, for detection of cardiac amyloidosis (CA) in patients with left ventricular hypertrophy (LVH) and their prognostic values in patients with AL-CA. Methods and results A total of 300 consecutive patients who underwent CMR for differential diagnosis of LVH were analyzed. CA was confirmed in 50 patients (39 with AL-CA and 11 with transthyretin amyloidosis), hypertrophic cardiomyopathy in 198, hypertensive heart disease in 47, and Fabry disease in 5. A semi-automated deep learning algorithm (Myomics-Q) was used for the analysis of the CMR images. The optimal cutoff extracellular volume fraction (ECV) for the differentiation of CA from other etiologies was 33.6% (diagnostic accuracy 85.6%). The automated ECV measurement showed a significant prognostic value for a composite of cardiovascular death and heart failure hospitalization in patients with AL-CA (revised Mayo stage III or IV) (adjusted hazard ratio 4.247 for ECV >= 40%, 95% confidence interval 1.215-14.851, p-value = 0.024). Incorporation of automated ECV measurement into the revised Mayo staging system resulted in better risk stratification (integrated discrimination index 27.9%, p = 0.013; categorical net reclassification index 13.8%, p = 0.007). Conclusions T1 mapping on CMR imaging, derived from AI-automated segmentation, not only allows for improved diagnosis of CA from other etiologies of LVH, but also provides significant prognostic value in patients with AL-CA.-
dc.languageEnglish-
dc.publisherPublic Library of Science-
dc.relation.isPartOfPLOS ONE-
dc.relation.isPartOfPLOS ONE-
dc.subject.MESHAged-
dc.subject.MESHCardiomyopathies* / diagnosis-
dc.subject.MESHCardiomyopathies* / diagnostic imaging-
dc.subject.MESHDeep Learning-
dc.subject.MESHDiagnosis, Differential-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHHypertrophy, Left Ventricular / diagnostic imaging-
dc.subject.MESHImmunoglobulin Light-chain Amyloidosis* / diagnosis-
dc.subject.MESHImmunoglobulin Light-chain Amyloidosis* / diagnostic imaging-
dc.subject.MESHImmunoglobulin Light-chain Amyloidosis* / pathology-
dc.subject.MESHMagnetic Resonance Imaging / methods-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHPrognosis-
dc.titleAutomated extracellular volume fraction measurement for diagnosis and prognostication in patients with light-chain cardiac amyloidosis-
dc.typeArticle-
dc.contributor.googleauthorHwang, In-Chang-
dc.contributor.googleauthorChun, Eun Ju-
dc.contributor.googleauthorKim, Pan Ki-
dc.contributor.googleauthorKim, Myeongju-
dc.contributor.googleauthorPark, Jiesuck-
dc.contributor.googleauthorChoi, Hong-Mi-
dc.contributor.googleauthorYoon, Yeonyee E.-
dc.contributor.googleauthorCho, Goo-Yeong-
dc.contributor.googleauthorChoi, Byoung Wook-
dc.identifier.doi10.1371/journal.pone.0317741-
dc.relation.journalcodeJ02540-
dc.identifier.eissn1932-6203-
dc.identifier.pmid39841643-
dc.contributor.affiliatedAuthorChoi, Byoung Wook-
dc.identifier.scopusid2-s2.0-85216298024-
dc.identifier.wosid001492214200063-
dc.citation.volume20-
dc.citation.number1-
dc.identifier.bibliographicCitationPLOS ONE, Vol.20(1), 2025-01-
dc.identifier.rimsid88691-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordPlusHYPERTROPHIC CARDIOMYOPATHY-
dc.subject.keywordPlusQUANTIFICATION-
dc.subject.keywordPlusASSOCIATION-
dc.subject.keywordPlusBIOMARKERS-
dc.subject.keywordPlusSOCIETY-
dc.subject.keywordPlusESC-
dc.subject.keywordPlusT1-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.identifier.articlenoe0317741-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.