Cited 0 times in 
Cited 0 times in 
Automated ischemic stroke lesion detection on non-contrast brain CT: a large-scale clinical feasibility test AI stroke lesion detection on NCCT
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Heo, Joonnyung | - |
| dc.contributor.author | Ryu, Wi-Sun | - |
| dc.contributor.author | Chung, Jong-Won | - |
| dc.contributor.author | Kim, Chi Kyung | - |
| dc.contributor.author | Kim, Joon-Tae | - |
| dc.contributor.author | Lee, Myungjae | - |
| dc.contributor.author | Kim, Dongmin | - |
| dc.contributor.author | Sunwoo, Leonard | - |
| dc.contributor.author | Ospel, Johanna M. | - |
| dc.contributor.author | Singh, Nishita | - |
| dc.contributor.author | Bae, Hee-Joon | - |
| dc.contributor.author | Kim, Beom Joon | - |
| dc.date.accessioned | 2025-10-31T07:47:34Z | - |
| dc.date.available | 2025-10-31T07:47:34Z | - |
| dc.date.created | 2025-10-28 | - |
| dc.date.issued | 2025-08 | - |
| dc.identifier.issn | 1662-4548 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/208067 | - |
| dc.description.abstract | <bold>Background:</bold> Non-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke patients undergoing endovascular thrombectomy. <bold>Methods:</bold> In this retrospective, multicenter cohort study (May 2011-April 2024), a modified 3D U-Net model was trained using paired NCCT and diffusion-weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. External validation was performed in 458 subjects. Clinical feasibility was assessed in 603 endovascular thrombectomy-treated patients with complete recanalization. Model outputs were compared against expert-annotated DWI lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints included follow-up DWI lesion volumes, hemorrhagic transformation, and 3-month modified Rankin Scale outcomes. <bold>Results:</bold> A total of 458 subjects were evaluated for external validation (mean age, 64 years +/- 16; 265 men). The model achieved 75.3% sensitivity (95% CI, 70.9-79.9%) and 79.1% specificity (95% CI, 77.1-81.3%). In the feasibility cohort (n = 603; mean age, 69 years +/- 13; 362 men), NCCT-derived lesion volumes correlated with follow-up DWI volumes (rho = 0.60, p < 0.001). Lesions >50 mL were associated with reduced favorable outcomes (17.3% [26/150] vs. 54.2% [246/453], p < 0.001) and higher hemorrhagic transformation rates (66.0% [99/150] vs. 46.3% [210/453], p < 0.001). Radiomics features improved hemorrhagic transformation prediction beyond clinical variables alone (area under the receiver operating characteristic curve, 0.833 vs. 0.626; p = 0.003). <bold>Conclusion:</bold> The automated NCCT-based lesion detection model demonstrated reliable diagnostic performance and provided clinically relevant prognostic information in endovascular thrombectomy-treated stroke patients. | - |
| dc.language | English | - |
| dc.publisher | Frontiers Research Foundation | - |
| dc.relation.isPartOf | FRONTIERS IN NEUROSCIENCE | - |
| dc.relation.isPartOf | FRONTIERS IN NEUROSCIENCE | - |
| dc.title | Automated ischemic stroke lesion detection on non-contrast brain CT: a large-scale clinical feasibility test AI stroke lesion detection on NCCT | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Heo, Joonnyung | - |
| dc.contributor.googleauthor | Ryu, Wi-Sun | - |
| dc.contributor.googleauthor | Chung, Jong-Won | - |
| dc.contributor.googleauthor | Kim, Chi Kyung | - |
| dc.contributor.googleauthor | Kim, Joon-Tae | - |
| dc.contributor.googleauthor | Lee, Myungjae | - |
| dc.contributor.googleauthor | Kim, Dongmin | - |
| dc.contributor.googleauthor | Sunwoo, Leonard | - |
| dc.contributor.googleauthor | Ospel, Johanna M. | - |
| dc.contributor.googleauthor | Singh, Nishita | - |
| dc.contributor.googleauthor | Bae, Hee-Joon | - |
| dc.contributor.googleauthor | Kim, Beom Joon | - |
| dc.identifier.doi | 10.3389/fnins.2025.1643479 | - |
| dc.relation.journalcode | J02867 | - |
| dc.identifier.eissn | 1662-453X | - |
| dc.identifier.pmid | 40933194 | - |
| dc.subject.keyword | ischemic stroke | - |
| dc.subject.keyword | artificial intelligence | - |
| dc.subject.keyword | non-contrast CT | - |
| dc.subject.keyword | brain CT | - |
| dc.subject.keyword | stroke - diagnosis | - |
| dc.contributor.affiliatedAuthor | Heo, Joonnyung | - |
| dc.identifier.scopusid | 2-s2.0-105015368526 | - |
| dc.identifier.wosid | 001568648000001 | - |
| dc.citation.volume | 19 | - |
| dc.identifier.bibliographicCitation | FRONTIERS IN NEUROSCIENCE, Vol.19, 2025-08 | - |
| dc.identifier.rimsid | 89954 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | ischemic stroke | - |
| dc.subject.keywordAuthor | artificial intelligence | - |
| dc.subject.keywordAuthor | non-contrast CT | - |
| dc.subject.keywordAuthor | brain CT | - |
| dc.subject.keywordAuthor | stroke - diagnosis | - |
| dc.type.docType | Article | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.relation.journalWebOfScienceCategory | Neurosciences | - |
| dc.relation.journalResearchArea | Neurosciences & Neurology | - |
| dc.identifier.articleno | 1643479 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.