9 39

Cited 0 times in

Cited 0 times in

Automated ischemic stroke lesion detection on non-contrast brain CT: a large-scale clinical feasibility test AI stroke lesion detection on NCCT

DC Field Value Language
dc.contributor.authorHeo, Joonnyung-
dc.contributor.authorRyu, Wi-Sun-
dc.contributor.authorChung, Jong-Won-
dc.contributor.authorKim, Chi Kyung-
dc.contributor.authorKim, Joon-Tae-
dc.contributor.authorLee, Myungjae-
dc.contributor.authorKim, Dongmin-
dc.contributor.authorSunwoo, Leonard-
dc.contributor.authorOspel, Johanna M.-
dc.contributor.authorSingh, Nishita-
dc.contributor.authorBae, Hee-Joon-
dc.contributor.authorKim, Beom Joon-
dc.date.accessioned2025-10-31T07:47:34Z-
dc.date.available2025-10-31T07:47:34Z-
dc.date.created2025-10-28-
dc.date.issued2025-08-
dc.identifier.issn1662-4548-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208067-
dc.description.abstract<bold>Background:</bold> Non-contrast CT (NCCT) is widely used imaging modality for acute stroke imaging but often fails to detect subtle early ischemic changes. Such underestimation can lead clinicians to overlook tissue-level information. This study aimed to develop and externally validate automated software for detecting ischemic lesions on NCCT and to assess its clinical feasibility in stroke patients undergoing endovascular thrombectomy. <bold>Methods:</bold> In this retrospective, multicenter cohort study (May 2011-April 2024), a modified 3D U-Net model was trained using paired NCCT and diffusion-weighted imaging (DWI) data from 2,214 patients with acute ischemic stroke. External validation was performed in 458 subjects. Clinical feasibility was assessed in 603 endovascular thrombectomy-treated patients with complete recanalization. Model outputs were compared against expert-annotated DWI lesions for sensitivity, specificity, and volumetric correlation. Clinical endpoints included follow-up DWI lesion volumes, hemorrhagic transformation, and 3-month modified Rankin Scale outcomes. <bold>Results:</bold> A total of 458 subjects were evaluated for external validation (mean age, 64 years +/- 16; 265 men). The model achieved 75.3% sensitivity (95% CI, 70.9-79.9%) and 79.1% specificity (95% CI, 77.1-81.3%). In the feasibility cohort (n = 603; mean age, 69 years +/- 13; 362 men), NCCT-derived lesion volumes correlated with follow-up DWI volumes (rho = 0.60, p < 0.001). Lesions >50 mL were associated with reduced favorable outcomes (17.3% [26/150] vs. 54.2% [246/453], p < 0.001) and higher hemorrhagic transformation rates (66.0% [99/150] vs. 46.3% [210/453], p < 0.001). Radiomics features improved hemorrhagic transformation prediction beyond clinical variables alone (area under the receiver operating characteristic curve, 0.833 vs. 0.626; p = 0.003). <bold>Conclusion:</bold> The automated NCCT-based lesion detection model demonstrated reliable diagnostic performance and provided clinically relevant prognostic information in endovascular thrombectomy-treated stroke patients.-
dc.languageEnglish-
dc.publisherFrontiers Research Foundation-
dc.relation.isPartOfFRONTIERS IN NEUROSCIENCE-
dc.relation.isPartOfFRONTIERS IN NEUROSCIENCE-
dc.titleAutomated ischemic stroke lesion detection on non-contrast brain CT: a large-scale clinical feasibility test AI stroke lesion detection on NCCT-
dc.typeArticle-
dc.contributor.googleauthorHeo, Joonnyung-
dc.contributor.googleauthorRyu, Wi-Sun-
dc.contributor.googleauthorChung, Jong-Won-
dc.contributor.googleauthorKim, Chi Kyung-
dc.contributor.googleauthorKim, Joon-Tae-
dc.contributor.googleauthorLee, Myungjae-
dc.contributor.googleauthorKim, Dongmin-
dc.contributor.googleauthorSunwoo, Leonard-
dc.contributor.googleauthorOspel, Johanna M.-
dc.contributor.googleauthorSingh, Nishita-
dc.contributor.googleauthorBae, Hee-Joon-
dc.contributor.googleauthorKim, Beom Joon-
dc.identifier.doi10.3389/fnins.2025.1643479-
dc.relation.journalcodeJ02867-
dc.identifier.eissn1662-453X-
dc.identifier.pmid40933194-
dc.subject.keywordischemic stroke-
dc.subject.keywordartificial intelligence-
dc.subject.keywordnon-contrast CT-
dc.subject.keywordbrain CT-
dc.subject.keywordstroke - diagnosis-
dc.contributor.affiliatedAuthorHeo, Joonnyung-
dc.identifier.scopusid2-s2.0-105015368526-
dc.identifier.wosid001568648000001-
dc.citation.volume19-
dc.identifier.bibliographicCitationFRONTIERS IN NEUROSCIENCE, Vol.19, 2025-08-
dc.identifier.rimsid89954-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorischemic stroke-
dc.subject.keywordAuthorartificial intelligence-
dc.subject.keywordAuthornon-contrast CT-
dc.subject.keywordAuthorbrain CT-
dc.subject.keywordAuthorstroke - diagnosis-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryNeurosciences-
dc.relation.journalResearchAreaNeurosciences & Neurology-
dc.identifier.articleno1643479-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.