Cited 2 times in 
Cited 0 times in 
Large Language Models for CAD-RADS 2.0 Extraction From Semi-Structured Coronary CT Angiography Reports: A Multi-Institutional Study
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Min, Dabin | - |
| dc.contributor.author | Jin, Kwang Nam | - |
| dc.contributor.author | Bang, SangHeum | - |
| dc.contributor.author | Kim, Moon Young | - |
| dc.contributor.author | Kim, Hack-Lyoung | - |
| dc.contributor.author | Jeong, Won Gi | - |
| dc.contributor.author | Lee, Hye-Jeong | - |
| dc.contributor.author | Beck, Kyongmin Sarah | - |
| dc.contributor.author | Hwang, Sung Ho | - |
| dc.contributor.author | Kim, Eun Young | - |
| dc.contributor.author | Park, Chang Min | - |
| dc.date.accessioned | 2025-10-31T07:47:29Z | - |
| dc.date.available | 2025-10-31T07:47:29Z | - |
| dc.date.created | 2025-10-28 | - |
| dc.date.issued | 2025-09 | - |
| dc.identifier.issn | 1229-6929 | - |
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/208053 | - |
| dc.description.abstract | Objective: To evaluate the accuracy of large language models (LLMs) in extracting Coronary Artery Disease-Reporting and Data System (CAD-RADS) 2.0 components from coronary CT angiography (CCTA) reports, and assess the impact of prompting strategies. Materials and Methods: In this multi-institutional study, we collected 319 synthetic, semi-structured CCTA reports from six institutions to protect patient privacy while maintaining clinical relevance. The dataset included 150 reports from a primary institution (100 for instruction development and 50 for internal testing) and 169 reports from five external institutions for external testing. Board-certified radiologists established reference standards following the CAD-RADS 2.0 guidelines for all three components: stenosis severity, plaque burden, and modifiers. Six LLMs (GPT-4, GPT-4o, Claude-3.5-Sonnet, o1-mini, Gemini-1.5-Pro, and DeepSeek-R1-Distill-Qwen-14B) were evaluated using an optimized instruction with prompting strategies, including zero-shot or few-shot with or without chain-of-thought (CoT) prompting. The accuracy was assessed and compared using McNemar's test. Results: LLMs demonstrated robust accuracy across all CAD-RADS 2.0 components. Peak stenosis severity accuracies reached 0.980 (48/49, Claude-3.5-Sonnet and o1-mini) in internal testing and 0.946 (158/167, GPT-4o and o1-mini) in external testing. Plaque burden extraction showed exceptional accuracy, with multiple models achieving perfect accuracy (43/43) in internal testing and 0.993 (137/138, GPT-4o, and o1-mini) in external testing. Modifier detection demonstrated consistently high accuracy (>= 0.990) across most models. One open-source model, DeepSeek-R1-Distill-Qwen-14B, showed a relatively low accuracy for stenosis severity: 0.898 (44/49, internal) and 0.820 (137/167, external). CoT prompting significantly enhanced the accuracy of several models, with GPT-4 showing the most substantial improvements: stenosis severity accuracy increased by 0.192 (P < 0.001) and plaque burden accuracy by 0.152 (P < 0.001) in external testing. Conclusion: LLMs demonstrated high accuracy in automated extraction of CAD-RADS 2.0 components from semi-structured CCTA reports, particularly when used with CoT prompting. | - |
| dc.language | English | - |
| dc.publisher | Korean Society of Radiology | - |
| dc.relation.isPartOf | KOREAN JOURNAL OF RADIOLOGY | - |
| dc.relation.isPartOf | KOREAN JOURNAL OF RADIOLOGY | - |
| dc.title | Large Language Models for CAD-RADS 2.0 Extraction From Semi-Structured Coronary CT Angiography Reports: A Multi-Institutional Study | - |
| dc.type | Article | - |
| dc.contributor.googleauthor | Min, Dabin | - |
| dc.contributor.googleauthor | Jin, Kwang Nam | - |
| dc.contributor.googleauthor | Bang, SangHeum | - |
| dc.contributor.googleauthor | Kim, Moon Young | - |
| dc.contributor.googleauthor | Kim, Hack-Lyoung | - |
| dc.contributor.googleauthor | Jeong, Won Gi | - |
| dc.contributor.googleauthor | Lee, Hye-Jeong | - |
| dc.contributor.googleauthor | Beck, Kyongmin Sarah | - |
| dc.contributor.googleauthor | Hwang, Sung Ho | - |
| dc.contributor.googleauthor | Kim, Eun Young | - |
| dc.contributor.googleauthor | Park, Chang Min | - |
| dc.identifier.doi | 10.3348/kjr.2025.0293 | - |
| dc.relation.journalcode | J02884 | - |
| dc.identifier.eissn | 2005-8330 | - |
| dc.identifier.pmid | 40873373 | - |
| dc.subject.keyword | Coronary CT angiography | - |
| dc.subject.keyword | CAD-RADS 2.0 | - |
| dc.subject.keyword | Information extraction | - |
| dc.subject.keyword | Large language model | - |
| dc.subject.keyword | Prompting strategy | - |
| dc.contributor.affiliatedAuthor | Lee, Hye-Jeong | - |
| dc.identifier.scopusid | 2-s2.0-105014809191 | - |
| dc.identifier.wosid | 001561955100003 | - |
| dc.citation.volume | 26 | - |
| dc.citation.number | 9 | - |
| dc.citation.startPage | 817 | - |
| dc.citation.endPage | 831 | - |
| dc.identifier.bibliographicCitation | KOREAN JOURNAL OF RADIOLOGY, Vol.26(9) : 817-831, 2025-09 | - |
| dc.identifier.rimsid | 89922 | - |
| dc.type.rims | ART | - |
| dc.description.journalClass | 1 | - |
| dc.description.journalClass | 1 | - |
| dc.subject.keywordAuthor | Coronary CT angiography | - |
| dc.subject.keywordAuthor | CAD-RADS 2.0 | - |
| dc.subject.keywordAuthor | Information extraction | - |
| dc.subject.keywordAuthor | Large language model | - |
| dc.subject.keywordAuthor | Prompting strategy | - |
| dc.subject.keywordPlus | DATA SYSTEM | - |
| dc.subject.keywordPlus | AMERICAN-COLLEGE | - |
| dc.subject.keywordPlus | CHEST-PAIN | - |
| dc.subject.keywordPlus | GUIDELINE | - |
| dc.subject.keywordPlus | ACR | - |
| dc.type.docType | Article | - |
| dc.identifier.kciid | ART003232896 | - |
| dc.description.isOpenAccess | Y | - |
| dc.description.journalRegisteredClass | scie | - |
| dc.description.journalRegisteredClass | scopus | - |
| dc.description.journalRegisteredClass | kci | - |
| dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
| dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.