9 108

Cited 2 times in

Cited 0 times in

Large Language Models for CAD-RADS 2.0 Extraction From Semi-Structured Coronary CT Angiography Reports: A Multi-Institutional Study

DC Field Value Language
dc.contributor.authorMin, Dabin-
dc.contributor.authorJin, Kwang Nam-
dc.contributor.authorBang, SangHeum-
dc.contributor.authorKim, Moon Young-
dc.contributor.authorKim, Hack-Lyoung-
dc.contributor.authorJeong, Won Gi-
dc.contributor.authorLee, Hye-Jeong-
dc.contributor.authorBeck, Kyongmin Sarah-
dc.contributor.authorHwang, Sung Ho-
dc.contributor.authorKim, Eun Young-
dc.contributor.authorPark, Chang Min-
dc.date.accessioned2025-10-31T07:47:29Z-
dc.date.available2025-10-31T07:47:29Z-
dc.date.created2025-10-28-
dc.date.issued2025-09-
dc.identifier.issn1229-6929-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208053-
dc.description.abstractObjective: To evaluate the accuracy of large language models (LLMs) in extracting Coronary Artery Disease-Reporting and Data System (CAD-RADS) 2.0 components from coronary CT angiography (CCTA) reports, and assess the impact of prompting strategies. Materials and Methods: In this multi-institutional study, we collected 319 synthetic, semi-structured CCTA reports from six institutions to protect patient privacy while maintaining clinical relevance. The dataset included 150 reports from a primary institution (100 for instruction development and 50 for internal testing) and 169 reports from five external institutions for external testing. Board-certified radiologists established reference standards following the CAD-RADS 2.0 guidelines for all three components: stenosis severity, plaque burden, and modifiers. Six LLMs (GPT-4, GPT-4o, Claude-3.5-Sonnet, o1-mini, Gemini-1.5-Pro, and DeepSeek-R1-Distill-Qwen-14B) were evaluated using an optimized instruction with prompting strategies, including zero-shot or few-shot with or without chain-of-thought (CoT) prompting. The accuracy was assessed and compared using McNemar&apos;s test. Results: LLMs demonstrated robust accuracy across all CAD-RADS 2.0 components. Peak stenosis severity accuracies reached 0.980 (48/49, Claude-3.5-Sonnet and o1-mini) in internal testing and 0.946 (158/167, GPT-4o and o1-mini) in external testing. Plaque burden extraction showed exceptional accuracy, with multiple models achieving perfect accuracy (43/43) in internal testing and 0.993 (137/138, GPT-4o, and o1-mini) in external testing. Modifier detection demonstrated consistently high accuracy (>= 0.990) across most models. One open-source model, DeepSeek-R1-Distill-Qwen-14B, showed a relatively low accuracy for stenosis severity: 0.898 (44/49, internal) and 0.820 (137/167, external). CoT prompting significantly enhanced the accuracy of several models, with GPT-4 showing the most substantial improvements: stenosis severity accuracy increased by 0.192 (P < 0.001) and plaque burden accuracy by 0.152 (P < 0.001) in external testing. Conclusion: LLMs demonstrated high accuracy in automated extraction of CAD-RADS 2.0 components from semi-structured CCTA reports, particularly when used with CoT prompting.-
dc.languageEnglish-
dc.publisherKorean Society of Radiology-
dc.relation.isPartOfKOREAN JOURNAL OF RADIOLOGY-
dc.relation.isPartOfKOREAN JOURNAL OF RADIOLOGY-
dc.titleLarge Language Models for CAD-RADS 2.0 Extraction From Semi-Structured Coronary CT Angiography Reports: A Multi-Institutional Study-
dc.typeArticle-
dc.contributor.googleauthorMin, Dabin-
dc.contributor.googleauthorJin, Kwang Nam-
dc.contributor.googleauthorBang, SangHeum-
dc.contributor.googleauthorKim, Moon Young-
dc.contributor.googleauthorKim, Hack-Lyoung-
dc.contributor.googleauthorJeong, Won Gi-
dc.contributor.googleauthorLee, Hye-Jeong-
dc.contributor.googleauthorBeck, Kyongmin Sarah-
dc.contributor.googleauthorHwang, Sung Ho-
dc.contributor.googleauthorKim, Eun Young-
dc.contributor.googleauthorPark, Chang Min-
dc.identifier.doi10.3348/kjr.2025.0293-
dc.relation.journalcodeJ02884-
dc.identifier.eissn2005-8330-
dc.identifier.pmid40873373-
dc.subject.keywordCoronary CT angiography-
dc.subject.keywordCAD-RADS 2.0-
dc.subject.keywordInformation extraction-
dc.subject.keywordLarge language model-
dc.subject.keywordPrompting strategy-
dc.contributor.affiliatedAuthorLee, Hye-Jeong-
dc.identifier.scopusid2-s2.0-105014809191-
dc.identifier.wosid001561955100003-
dc.citation.volume26-
dc.citation.number9-
dc.citation.startPage817-
dc.citation.endPage831-
dc.identifier.bibliographicCitationKOREAN JOURNAL OF RADIOLOGY, Vol.26(9) : 817-831, 2025-09-
dc.identifier.rimsid89922-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorCoronary CT angiography-
dc.subject.keywordAuthorCAD-RADS 2.0-
dc.subject.keywordAuthorInformation extraction-
dc.subject.keywordAuthorLarge language model-
dc.subject.keywordAuthorPrompting strategy-
dc.subject.keywordPlusDATA SYSTEM-
dc.subject.keywordPlusAMERICAN-COLLEGE-
dc.subject.keywordPlusCHEST-PAIN-
dc.subject.keywordPlusGUIDELINE-
dc.subject.keywordPlusACR-
dc.type.docTypeArticle-
dc.identifier.kciidART003232896-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.