0 30

Cited 0 times in

Cited 0 times in

Automated breast ultrasound features associated with diagnostic performance of a multiview convolutional neural network according to the level of experience of radiologists

DC Field Value Language
dc.contributor.authorChoi, Eun Jung-
dc.contributor.authorWang, Yi-
dc.contributor.authorChoi, Hyemi-
dc.contributor.authorYouk, Ji Hyun-
dc.contributor.authorByon, Jung Hee-
dc.contributor.authorChoi, Seoyun-
dc.contributor.authorKo, Seokbum-
dc.contributor.authorJin, Gong Yong-
dc.date.accessioned2025-10-28T02:40:02Z-
dc.date.available2025-10-28T02:40:02Z-
dc.date.created2025-09-23-
dc.date.issued2025-08-
dc.identifier.issn0172-4614-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/208022-
dc.description.abstractPurpose To investigate automated breast ultrasound (ABUS) features affecting the use of a multiview convolutional neural network (CNN) for breast lesions according to the level of experience of radiologists. Materials and Methods A total of 656 breast lesions (152 malignant and 504 benign lesions) were included and reviewed by 6 radiologists for background echotexture, glandular tissue component (GTC), and lesion type and size without as well as with a multiview CNN. The sensitivity, specificity, and the area under the receiver operating curve (AUC) for ABUS features were compared between 2 sessions according to the level of the radiologists&apos; experience. Results Radiology residents showed significant AUC improvement with the multiview CNN for mass (0.81-0.91, P =0.003) and non-mass lesions (0.56-0.90, P =0.007), all background echotextures (homogeneous-fat: 0.84-0.94, P =0.04; homogeneous-fibroglandular: 0.85-0.93, P =0.01; heterogeneous: 0.68-0.88, P =0.002), all GTC levels (minimal: 0.86-0.93, P =0.001; mild: 0.82-0.94, P =0.003; moderate: 0.75-0.88, P =0.01; marked: 0.68-0.89, P <0.001), and lesions <= 10mm (<= 5mm: 0.69-0.86, P <0.001; 6-10mm: 0.83-0.92, P <0.001). Breast specialists showed significant AUC improvement with the multiview CNN in heterogeneous echotexture (0.90-0.95, P =0.03), marked GTC (0.88-0.95, P <0.001), and lesions <= 10mm (<= 5mm: 0.89-0.93, P =0.02; 6-10mm: 0.95-0.98, P =0.01). Conclusion With the multiview CNN, ABUS performance among radiology residents was improved regardless of lesion type, background echotexture, or GTC. For breast lesions smaller than 10mm, both radiology residents and breast specialists achieved better ABUS performance.-
dc.languageGerman, English-
dc.publisherThieme Verlag-
dc.relation.isPartOfULTRASCHALL IN DER MEDIZIN-
dc.relation.isPartOfULTRASCHALL IN DER MEDIZIN-
dc.titleAutomated breast ultrasound features associated with diagnostic performance of a multiview convolutional neural network according to the level of experience of radiologists-
dc.typeArticle-
dc.contributor.googleauthorChoi, Eun Jung-
dc.contributor.googleauthorWang, Yi-
dc.contributor.googleauthorChoi, Hyemi-
dc.contributor.googleauthorYouk, Ji Hyun-
dc.contributor.googleauthorByon, Jung Hee-
dc.contributor.googleauthorChoi, Seoyun-
dc.contributor.googleauthorKo, Seokbum-
dc.contributor.googleauthorJin, Gong Yong-
dc.identifier.doi10.1055/a-2643-9818-
dc.relation.journalcodeJ02766-
dc.identifier.eissn1438-8782-
dc.identifier.pmid40570897-
dc.identifier.urlhttps://www.thieme-connect.de/products/ejournals/abstract/10.1055/a-2643-9818-
dc.subject.keywordBreast-
dc.subject.keywordMultiview convolutional neural network-
dc.subject.keywordAutomated breast ultrasound-
dc.subject.keywordDiagnostic performance-
dc.subject.keywordUltrasound features-
dc.contributor.affiliatedAuthorYouk, Ji Hyun-
dc.identifier.wosid001553585700001-
dc.identifier.bibliographicCitationULTRASCHALL IN DER MEDIZIN, , 2025-08-
dc.identifier.rimsid89655-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorBreast-
dc.subject.keywordAuthorMultiview convolutional neural network-
dc.subject.keywordAuthorAutomated breast ultrasound-
dc.subject.keywordAuthorDiagnostic performance-
dc.subject.keywordAuthorUltrasound features-
dc.subject.keywordPlusCLASSIFICATION-
dc.subject.keywordPlusLESIONS-
dc.type.docTypeArticle; Early Access-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalWebOfScienceCategoryAcoustics-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaAcoustics-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiology (영상의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.