7 92

Cited 0 times in

Cited 0 times in

Development of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients: a prediction study

DC Field Value Language
dc.contributor.authorChoi, Dong Hyeok-
dc.contributor.authorHwang, Joonil-
dc.contributor.authorYoon, Hai-Jeon-
dc.contributor.authorAhn, So Hyun-
dc.date.accessioned2025-10-24T06:02:00Z-
dc.date.available2025-10-24T06:02:00Z-
dc.date.created2025-10-14-
dc.date.issued2025-04-
dc.identifier.issn2234-3180-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/207883-
dc.description.abstractPurpose: The standardized uptake value (SUV) is a key quantitative index in nuclear medicine imaging; however, variations in region-of-interest (ROI) determination exist across institutions. This study aims to standardize SUV evaluation by introducing a deep learning-based quantitative analysis method that enhances diagnostic and prognostic accuracy. Methods: We used the Swin UNETR model to automatically segment key organs (breast, liver, spleen, and bone marrow) critical for breast cancer prognosis. Tumor segmentation was performed iteratively based on predefined SUV thresholds, and prognostic information was extracted from the liver, spleen, and bone marrow (reticuloendothelial system). The artificial intelligence training process employed 3 datasets: a test dataset (40 patients), a validation dataset (10 patients), and an independent test dataset (10 patients). To validate our approach, we compared the SUV values obtained using our method with those produced by commercial software. Results: In a dataset of 10 patients, our method achieved an auto-segmentation accuracy of 0.9311 for all target organs. Comparison of maximum SUV and mean SUV values from our automated segmentation with those from traditional single-ROI methods revealed differences of 0.19 and 0.16, respectively, demonstrating improved reliability and accuracy in whole-organ SUV analysis. Conclusion: This study successfully standardized SUV calculation in nuclear medicine imaging through deep learning-based automated organ segmentation and SUV analysis, significantly enhancing accuracy in predicting breast cancer prognosis.-
dc.languageKorean-
dc.publisher이화여자대학교 의과대학-
dc.relation.isPartOfEWHA MEDICAL JOURNAL-
dc.relation.isPartOfEWHA MEDICAL JOURNAL-
dc.titleDevelopment of automatic organ segmentation based on positron-emission tomography analysis system using Swin UNETR in breast cancer patients: a prediction study-
dc.typeArticle-
dc.contributor.googleauthorChoi, Dong Hyeok-
dc.contributor.googleauthorHwang, Joonil-
dc.contributor.googleauthorYoon, Hai-Jeon-
dc.contributor.googleauthorAhn, So Hyun-
dc.identifier.doi10.12771/emj.2025.00094-
dc.relation.journalcodeJ02864-
dc.identifier.eissn2234-2591-
dc.identifier.pmid40703367-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordBreast neoplasms-
dc.subject.keywordDeep learning-
dc.subject.keywordPositron emission tomography-
dc.subject.keywordPrognosis-
dc.subject.keywordRepublic of Korea-
dc.contributor.affiliatedAuthorChoi, Dong Hyeok-
dc.identifier.wosid001518615100001-
dc.citation.volume48-
dc.citation.number2-
dc.identifier.bibliographicCitationEWHA MEDICAL JOURNAL, Vol.48(2), 2025-04-
dc.identifier.rimsid89858-
dc.type.rimsART-
dc.description.journalClass1-
dc.description.journalClass1-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorBreast neoplasms-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorPositron emission tomography-
dc.subject.keywordAuthorPrognosis-
dc.subject.keywordAuthorRepublic of Korea-
dc.subject.keywordPlusPROGNOSTIC VALUE-
dc.subject.keywordPlusFDG-PET-
dc.type.docTypeArticle-
dc.description.isOpenAccessY-
dc.relation.journalWebOfScienceCategoryMedicine, General & Internal-
dc.relation.journalResearchAreaGeneral & Internal Medicine-
dc.identifier.articlenoe30-
Appears in Collections:
7. Others (기타) > Others (기타) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.