Cited 0 times in
Cited 0 times in
Deep learning reconstruction of zero echo time magnetic resonance imaging: diagnostic performance in axial spondyloarthritis
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yi, Jisook | - |
dc.contributor.author | Hahn, Seok | - |
dc.contributor.author | Lee, Ho-Joon | - |
dc.contributor.author | Lee, Sunggun | - |
dc.contributor.author | Park, Sekyoung | - |
dc.contributor.author | Lee, Joonsung | - |
dc.contributor.author | de Arcos, Jose | - |
dc.contributor.author | Fung, Maggie | - |
dc.date.accessioned | 2025-10-02T05:46:21Z | - |
dc.date.available | 2025-10-02T05:46:21Z | - |
dc.date.created | 2025-09-22 | - |
dc.date.issued | 2025-07 | - |
dc.identifier.issn | 0938-7994 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/207379 | - |
dc.description.abstract | Objectives To compare the diagnostic performance of deep learning reconstruction (DLR) of zero echo time (ZTE) MRI for structural lesions in patients with axial spondyloarthritis, against T1WI and ZTE MRI without DLR, using CT as the reference standard. Materials and methods From February 2021 to December 2022, 26 patients (52 sacroiliac joints (SIJ) and 104 quadrants) underwent SIJ MRIs. Three readers assessed overall image quality and structural conspicuity, scoring SIJs for structural lesions on T1WI, ZTE, and ZTE DLR 50%, 75%, and 100%, respectively. Diagnostic performance was evaluated using CT as the reference standard, and inter-reader agreement was assessed using weighted kappa. Results ZTE DLR 100% showed the highest image quality scores for readers 1 and 2, and the best structural conspicuity scores for all three readers. In readers 2 and 3, ZTE DLR 75% showed the best diagnostic performance for bone sclerosis, outperforming T1WI and ZTE (all p < 0.05). In all readers, ZTE DLR 100% showed superior diagnostic performance for bone erosion compared to T1WI and ZTE (all p < 0.01). For bone sclerosis, ZTE DLR 50% showed the highest kappa coefficients between readers 1 and 2 and between readers 1 and 3. For bone erosion, ZTE DLR 100% showed the highest kappa coefficients between readers. Conclusion ZTE MRI with DLR outperformed T1WI and ZTE MRI without DLR in diagnosing bone sclerosis and erosion of the SIJ, while offering similar subjective image quality and structural conspicuity. | - |
dc.language | English | - |
dc.publisher | Springer International | - |
dc.relation.isPartOf | EUROPEAN RADIOLOGY | - |
dc.relation.isPartOf | EUROPEAN RADIOLOGY | - |
dc.title | Deep learning reconstruction of zero echo time magnetic resonance imaging: diagnostic performance in axial spondyloarthritis | - |
dc.type | Article | - |
dc.contributor.googleauthor | Yi, Jisook | - |
dc.contributor.googleauthor | Hahn, Seok | - |
dc.contributor.googleauthor | Lee, Ho-Joon | - |
dc.contributor.googleauthor | Lee, Sunggun | - |
dc.contributor.googleauthor | Park, Sekyoung | - |
dc.contributor.googleauthor | Lee, Joonsung | - |
dc.contributor.googleauthor | de Arcos, Jose | - |
dc.contributor.googleauthor | Fung, Maggie | - |
dc.identifier.doi | 10.1007/s00330-025-11843-3 | - |
dc.relation.journalcode | J00851 | - |
dc.identifier.eissn | 1432-1084 | - |
dc.identifier.pmid | 40707731 | - |
dc.subject.keyword | Sacroiliac joint | - |
dc.subject.keyword | Magnetic resonance imaging | - |
dc.subject.keyword | Sacroiliitis | - |
dc.contributor.affiliatedAuthor | Hahn, Seok | - |
dc.identifier.scopusid | 2-s2.0-105011938653 | - |
dc.identifier.wosid | 001536352600001 | - |
dc.identifier.bibliographicCitation | EUROPEAN RADIOLOGY, , 2025-07 | - |
dc.identifier.rimsid | 89497 | - |
dc.type.rims | ART | - |
dc.description.journalClass | 1 | - |
dc.description.journalClass | 1 | - |
dc.subject.keywordAuthor | Sacroiliac joint | - |
dc.subject.keywordAuthor | Magnetic resonance imaging | - |
dc.subject.keywordAuthor | Sacroiliitis | - |
dc.subject.keywordPlus | COMPUTED-TOMOGRAPHY | - |
dc.subject.keywordPlus | STRUCTURAL LESIONS | - |
dc.subject.keywordPlus | SACROILIAC JOINT | - |
dc.subject.keywordPlus | MRI | - |
dc.type.docType | Article; Early Access | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.