Cited 0 times in 
Cited 0 times in 
Deep learning-based identification of vertebral fracture and osteoporosis in lateral spine radiographs and DXA vertebral fracture assessment to predict incident fracture
| DC Field | Value | Language | 
|---|---|---|
| dc.contributor.author | 김경민 | - | 
| dc.contributor.author | 김창오 | - | 
| dc.contributor.author | 김현창 | - | 
| dc.contributor.author | 이영한 | - | 
| dc.contributor.author | 이유미 | - | 
| dc.contributor.author | 홍남기 | - | 
| dc.date.accessioned | 2025-09-02T08:22:16Z | - | 
| dc.date.available | 2025-09-02T08:22:16Z | - | 
| dc.date.issued | 2025-05 | - | 
| dc.identifier.issn | 0884-0431 | - | 
| dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/207283 | - | 
| dc.description.abstract | Deep learning (DL) identification of vertebral fractures and osteoporosis in lateral spine radiographs and DXA vertebral fracture assessment (VFA) images may improve fracture risk assessment in older adults. In 26 299 lateral spine radiographs from 9276 individuals attending a tertiary-level institution (60% train set; 20% validation set; 20% test set; VERTE-X cohort), DL models were developed to detect prevalent vertebral fracture (pVF) and osteoporosis. The pre-trained DL models from lateral spine radiographs were then fine-tuned in 30% of a DXA VFA dataset (KURE cohort), with performance evaluated in the remaining 70% test set. The area under the receiver operating characteristics curve (AUROC) for DL models to detect pVF and osteoporosis was 0.926 (95% CI 0.908-0.955) and 0.848 (95% CI 0.827-0.869) from VERTE-X spine radiographs, respectively, and 0.924 (95% CI 0.905-0.942) and 0.867 (95% CI 0.853-0.881) from KURE DXA VFA images, respectively. A total of 13.3% and 13.6% of individuals sustained an incident fracture during a median follow-up of 5.4 years and 6.4 years in the VERTE-X test set (n = 1852) and KURE test set (n = 2456), respectively. Incident fracture risk was significantly greater among individuals with DL-detected vertebral fracture (hazard ratios [HRs] 3.23 [95% CI 2.51-5.17] and 2.11 [95% CI 1.62-2.74] for the VERTE-X and KURE test sets) or DL-detected osteoporosis (HR 2.62 [95% CI 1.90-3.63] and 2.14 [95% CI 1.72-2.66]), which remained significant after adjustment for clinical risk factors and femoral neck bone mineral density. DL scores improved incident fracture discrimination and net benefit when combined with clinical risk factors. In summary, DL-detected pVF and osteoporosis in lateral spine radiographs and DXA VFA images enhanced fracture risk prediction in older adults. | - | 
| dc.description.statementOfResponsibility | restriction | - | 
| dc.language | English | - | 
| dc.publisher | American Society for Bone and Mineral Research | - | 
| dc.relation.isPartOf | JOURNAL OF BONE AND MINERAL RESEARCH | - | 
| dc.rights | CC BY-NC-ND 2.0 KR | - | 
| dc.subject.MESH | Absorptiometry, Photon* | - | 
| dc.subject.MESH | Aged | - | 
| dc.subject.MESH | Aged, 80 and over | - | 
| dc.subject.MESH | Deep Learning* | - | 
| dc.subject.MESH | Female | - | 
| dc.subject.MESH | Humans | - | 
| dc.subject.MESH | Incidence | - | 
| dc.subject.MESH | Male | - | 
| dc.subject.MESH | Middle Aged | - | 
| dc.subject.MESH | Osteoporosis* / diagnostic imaging | - | 
| dc.subject.MESH | Osteoporotic Fractures* / diagnostic imaging | - | 
| dc.subject.MESH | Radiography* | - | 
| dc.subject.MESH | Spinal Fractures* / diagnostic imaging | - | 
| dc.subject.MESH | Spinal Fractures* / epidemiology | - | 
| dc.subject.MESH | Spine* / diagnostic imaging | - | 
| dc.title | Deep learning-based identification of vertebral fracture and osteoporosis in lateral spine radiographs and DXA vertebral fracture assessment to predict incident fracture | - | 
| dc.type | Article | - | 
| dc.contributor.college | College of Medicine (의과대학) | - | 
| dc.contributor.department | Dept. of Internal Medicine (내과학교실) | - | 
| dc.contributor.googleauthor | Namki Hong | - | 
| dc.contributor.googleauthor | Sang Wouk Cho | - | 
| dc.contributor.googleauthor | Young Han Lee | - | 
| dc.contributor.googleauthor | Chang Oh Kim | - | 
| dc.contributor.googleauthor | Hyeon Chang Kim | - | 
| dc.contributor.googleauthor | Yumie Rhee | - | 
| dc.contributor.googleauthor | William D Leslie | - | 
| dc.contributor.googleauthor | Steven R Cummings | - | 
| dc.contributor.googleauthor | Kyoung Min Kim | - | 
| dc.identifier.doi | 10.1093/jbmr/zjaf050 | - | 
| dc.contributor.localId | A00295 | - | 
| dc.contributor.localId | A01044 | - | 
| dc.contributor.localId | A01142 | - | 
| dc.contributor.localId | A02967 | - | 
| dc.contributor.localId | A03012 | - | 
| dc.contributor.localId | A04388 | - | 
| dc.relation.journalcode | J01278 | - | 
| dc.identifier.eissn | 1523-4681 | - | 
| dc.identifier.pmid | 40167218 | - | 
| dc.identifier.url | https://academic.oup.com/jbmr/article-abstract/40/5/628/8102299 | - | 
| dc.subject.keyword | fracture risk assessment | - | 
| dc.subject.keyword | osteoporosis | - | 
| dc.subject.keyword | radiology | - | 
| dc.subject.keyword | screening | - | 
| dc.subject.keyword | statistical methods | - | 
| dc.contributor.alternativeName | Kim, Kyung Min | - | 
| dc.contributor.affiliatedAuthor | 김경민 | - | 
| dc.contributor.affiliatedAuthor | 김창오 | - | 
| dc.contributor.affiliatedAuthor | 김현창 | - | 
| dc.contributor.affiliatedAuthor | 이영한 | - | 
| dc.contributor.affiliatedAuthor | 이유미 | - | 
| dc.contributor.affiliatedAuthor | 홍남기 | - | 
| dc.citation.volume | 40 | - | 
| dc.citation.number | 5 | - | 
| dc.citation.startPage | 628 | - | 
| dc.citation.endPage | 638 | - | 
| dc.identifier.bibliographicCitation | JOURNAL OF BONE AND MINERAL RESEARCH, Vol.40(5) : 628-638, 2025-05 | - | 
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.